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EGMO2022 Problems

DAY 1

Problem 1.
Let ABC be an acute-angled triangle in which BC < AB and BC < CA. Let point P lie on
segment AB and point Q lie on segment AC such that P ̸= B, Q ̸= C and BQ = BC = CP .
Let T be the circumcentre of triangle APQ, H the orthocentre of triangle ABC, and S the point of
intersection of the lines BQ and CP . Prove that T , H and S are collinear.

Problem 2.
Let N = {1, 2, 3, . . .} be the set of all positive integers. Find all functions f : N → N such that for
any positive integers a and b, the following two conditions hold:

(1) f(ab) = f(a)f(b), and

(2) at least two of the numbers f(a), f(b) and f(a+ b) are equal.

Problem 3.
An infinite sequence of positive integers a1, a2, . . . is called good if

(1) a1 is a perfect square, and

(2) for any integer n ≥ 2, an is the smallest positive integer such that

na1 + (n− 1)a2 + . . .+ 2an−1 + an

is a perfect square.

Prove that for any good sequence a1, a2, . . ., there exists a positive integer k such that an = ak for
all integers n ≥ k.
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EGMO2022 Problems

DAY 2

Problem 4.
Given a positive integer n ≥ 2, determine the largest positive integer N for which there exist N + 1
real numbers a0, a1, . . . , aN such that

(1) a0 + a1 = − 1

n
, and

(2) (ak + ak−1)(ak + ak+1) = ak−1 − ak+1 for 1 ≤ k ≤ N − 1.

Problem 5.
For all positive integers n, k, let f(n, 2k) be the number of ways an n×2k board can be fully covered
by nk dominoes of size 2× 1. (For example, f(2, 2) = 2 and f(3, 2) = 3.)
Find all positive integers n such that for every positive integer k, the number f(n, 2k) is odd.

Problem 6.
Let ABCD be a cyclic quadrilateral with circumcentre O. Let the internal angle bisectors at A and
B meet at X, the internal angle bisectors at B and C meet at Y , the internal angle bisectors at C
and D meet at Z, and the internal angle bisectors at D and A meet at W . Further, let AC and BD
meet at P . Suppose that the points X, Y, Z,W,O and P are distinct.

Prove that O,X, Y, Z and W lie on the same circle if and only if P,X, Y, Z and W lie on the
same circle.
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EGMO2022 Problems – Solutions

Problem 1.
Let ABC be an acute-angled triangle in which BC < AB and BC < CA. Let point P lie on
segment AB and point Q lie on segment AC such that P ̸= B, Q ̸= C and BQ = BC = CP .
Let T be the circumcentre of triangle APQ, H the orthocentre of triangle ABC, and S the point of
intersection of the lines BQ and CP . Prove that T , H and S are collinear.

Proposed by: Netherlands

Solution 1.
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We show that T and H are both on the angle bisector ℓ of ∠BSC.
We first prove that H ∈ ℓ. The altitude CH in triangle ABC is also the altitude in isosceles

triangle PBC with CP = CB. Therefore, CH is also the angle bisector of ∠PCB and hence also of
∠SCB. Analogously, BH is the angle bisector of ∠SBC. We conclude that H, as the intersection
of two angle bisectors of △BSC, is also on the third angle bisector, which is ℓ.

We now prove that T ∈ ℓ.
Variant 1. In the isosceles triangles △BCP and △CBQ we see that ∠BCP = 180◦ − 2∠B

and ∠CBQ = 180◦ − 2∠C. This yields ∠PSQ = ∠BSC = 180◦ − (180◦ − 2∠B)− (180◦ − 2∠C) =
180◦ − 2∠A. Furthermore, ∠PTQ = 2∠PAQ = 2∠A (T being circumcentre of △APQ). Now
∠PTQ + ∠PSQ = 180◦, so PTQS is a cyclic quadrilateral. From PT = TQ we then obtain that
∠PST = ∠PQT = ∠QPT = ∠QST , so T is on the angle bisector ∠PSQ, which is also ℓ.

We conclude that T , S and H are collinear.
Variant 2. Let R be the second intersection of BQ and ⊙APQ.
APRQ is cyclic quadrilateral, so ∠PRS = ∠A, ∠APR = ∠BQC = ∠C. On the other hand

∠BPC = ∠B. Therefore ∠RPS = 180◦−∠B−∠C = ∠A. Hence, the triangle PRS is isosceles with
SP = SR; then ℓ is the perpendicular bisector of the chord PR in the circle that passes through T .

Note that if BQ is tangent to ⊙APQ, then CP is also tangent to ⊙APQ and triangle ABC is
isosceles, so T , S and H lie on the altitude from A.
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Remark. The fact that CP is also tangent to ⊙APQ could be shown with PTQS beeing a
cyclic quadrilateral like in the first variant of the solution. Otherwise we can consider R the second
intersection of CP and ⊙APQ and prove that triangle QRS is isosceles.
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Solution 2.
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In the same way as in the previous solution, we see that ∠PSQ = 180◦−2∠A, so ∠CSQ = 2∠A.
From the cyclic quadrilateral AEHD (with E and D feet of the altitudes CH and BH) we see that
∠DHC = ∠DAE = ∠A. Since BH is the perpendicular bisector of CQ, we have ∠DHQ = ∠A
as well, so ∠CHQ = 2∠A. From ∠CHQ = 2∠A = ∠CSQ, we see CHSQ is a cyclic quadrilateral.
This means ∠QHS = ∠QCS.

Since triangles PTQ and CHQ are both isosceles with apex 2∠A, we get △PTQ ∼ △CHQ. We
see that one can be obtained from the other by a spiral similarity centered at Q, so we also obtain
△QTH ∼ △QPC. This means that ∠QHT = ∠QCP . Combining this with ∠QHS = ∠QCS, we
see that ∠QHT = ∠QCP = ∠QCS = ∠QHS. So ∠QHT = ∠QHS, which means that T , S and H
are collinear.
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Solution 3.
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Let us draw a parallel f to BC through A. Let B′ = BQ∩ f , C ′ = CP ∩ f . Then AQB′ ∼ CQB
and APC ′ ∼ BPC, therefore both QAB′ and APC ′ will be isosceles.

Also, BCS ∼ B′C ′S with respect to the similarity with center S, therefore if we take the image
of the line BH (which is the perpendicular bisector of the segment CQ) through this transformation,
it will go through the point B′, and be perpendicular to AQ (as the image of CQ is parallel to CQ).
As AQB′ is isosceles, this line is the perpendicular bisector of the segment AQ. This means it goes
through T , the circumcenter of APQ. Similarly on the other side the image of CH also goes through
T . This means that the image of H with respect to the similarity though S will be T , so T, S,H are
collinear.
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Problem 2.
Let N = {1, 2, 3, . . .} be the set of all positive integers. Find all functions f : N → N such that for
any positive integers a and b, the following two conditions hold:

(1) f(ab) = f(a)f(b), and

(2) at least two of the numbers f(a), f(b) and f(a+ b) are equal.

Proposed by: Fedir Yudin, Ukraine

Answer: f(n) = avp(n), where a ∈ N, p is a prime and vp(n) is the largest exponent of p dividing n.

Solution 1. First, all such functions f satisfy the conditions, as vp(a) ̸= vp(b) implies vp(a + b) =
min(vp(a), vp(b)). Plugging a, b = 1 into (1) gives f(1) = 1. Also, a simple induction gives that

f(
∏k

i=1 p
ai
i ) =

∏k
i=1 f(pi)

ai . Let S be the set of all primes p such that f(p) ̸= 1. If |S| = 1, then
S = {p} and f(p) = a for some a ̸= 1, and thus f(n) = avp(n) for all n. If S = ∅ then f(n) = 1 for
all n, which can be also written in the above form for a = 1.

Now suppose that S contains at least two primes. Let p < q be the two smallest elements of S.
Since all prime divisors of q − p are smaller than q and not equal to p, f(q − p) = 1. Using (2) for
p and q − p gives us that some two of f(p) ̸= 1, f(p− q) = 1 and f(q) ̸= 1 are equal, meaning that
f(p) = f(q). Let t ≥ 2 be the smallest integer such that pt > q, and let pt = aq + b with 0 ≤ b < q.
Since q ≥ pt−1 and q is not divisible by p, we have q > pt−1, so a < p, and thus f(a) = 1. Therefore
aq is not divisible by p, thus neither is b, and since b < q, f(b) = 1. Now using (2) for aq and b we
get that some two of f(aq) = f(a)f(q) = f(q) = f(p), f(b) = 1 and f(aq + b) = f(pt) = f(p)t are
equal, which is a contradiction.

Solution 1B (for the main part).
Suppose that there are two primes, p < q such that f(p) > 1 and f(q) > 1, and these are the two

smallest such primes.
1 < p − q < q and it is not divisible by p and q, therefore its prime factors are smaller than q,

so we conclude f(q − p) = 1. By (2), two of f(q − p) = 1, f(q − p) > 1 and f(q) > 1 are equal, so
f(q) = f(p) = a.

If p2 < q then q − p2 is not divisible by p and q, so we conclude f(q − p2) = 1 in the same way.
Then f(p2) = f(p)2 = a2, f(q − p2) = 1 and f(q) = a are distinct, contradicting (2). Hence, q < p2.

Let c = ⌊p2/q⌋; then 0 < c < p, so f(c) = 1. By 0 < p2 − cq < q, we get f(p2 − cq) = 1. Now
f(p2 − cq) = 1, f(p2) = a2 and f(cq) = a are distinct, contradicting (2) again.

Solution 2 (for the main part).
Suppose there exists a positive integer n such that f(n) ̸= 1 and f(n + 1) ̸= 1. We know that

f(1) = 1, so by (2) two of f(n) ̸= 1, f(n+ 1) ̸= 1 and f(1) = 1 are equal, therefore f(n) = f(n+ 1).
f(n2) = f(n)2 ̸= 1 and f(n2 − 1) = f(n + 1)f(n − 1) = f(n)f(n − 1) ̸= 1, but by (2) two of

f(1) = 1, f(n2−1) ̸= 1 and f(n2) ̸= 1 are equal, so f(n2−1) = f(n2) and thus f(n)f(n−1) = f(n)2,
therefore f(n− 1) = f(n).

Then for n− 1, it is also true that f(n− 1) ̸= 1 and f(n− 1 + 1) ̸= 1, so the same proof applies,
f(n− 1− 1) = f(n− 1) and so on. By induction we get that f(n) = f(1), which is a contradiction,
as f(1) = 1 and we assumed that f(n) ̸= 1. Therefore, there can’t be any n for which f(n) ̸= 1 and
f(n+ 1) ̸= 1.

Now suppose there are two primes, p ̸= q ∈ S such that f(p) ̸= 1 and f(q) ̸= 1. Then by the
Chinese remainder theorem, there exists a number n such that p|n and q|n + 1, so f(p)|f(n) and
f(q)|f(n+ 1) thus f(n) ̸= 1 and f(n+ 1) ̸= 1. This is a contradiction, so S can’t have two distinct
elements.
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Solution 3 (Joseph Myers) (for the second part).

Claim 3.1. If f(m) > 1 for some m ∈ N, then there are less than m different prime numbers pi with
f(pi) > 1.

Proof. On the one hand, if f(m) = c > 1, then for any n ∈ N, there is some k ∈ {n+1, n+2 . . . , n+m}
such that f(k) ∈ {1, c}. To show this, it is enough to see that condition (2) implies that for any
n ∈ N

• if f(n) = c, then f(n+ 1) ∈ {1, c};
• if f(n) = 1, then f(n+m) ∈ {1, c}.

On the other hand, if we suppose that there are m different prime numbers p1, p2, . . . , pm, then we
know (by the Chinese Remainder Theorem) that for any number t ∈ N, there exists a number nt ∈ N
such that ptk | nt + k for each k ∈ {1, 2, . . . ,m}. Hence for each k, we have

f(nt + k) ≥ f(pti) = f(pi)
t ≥ 2t.

If 2t > c, then it means that f(k) > c for all k ∈ {nt + 1, nt + 2 . . . , nt +m}. □
Now we can suppose that for some m ≥ 2, the set of primes with f(p) > 1 is S = {p1, p2, . . . , pm}.

Now let S1 and S2 be two disjoint nonempty subsets such that S1 ∪ S2 = S. Let a =
∏

pi∈S1
pi and

b =
∏

pj∈S2
pj.

Now for any k, ℓ ∈ N, ak + bℓ is coprime to all primes in S, hence f(ak + bℓ) = 1. It is easy to see
that we can choose k and ℓ such that f(ak) ̸= f(bℓ), which contradicts condition (2).

Solution 4 (for the main part). Let p the minimal (prime) number with f(p) = c > 1.

Claim 4.1. For any k ∈ N, f(1 + p+ p2 + . . .+ pk) ∈ {1, c, c2, . . . , ck}.
Proof of the claim. Use condition (2) recursively. □

Now suppose that there exists some prime q > p with f(q) > 1, and consider the following three
values of f :

• f(1) = 1.

• f(pq−1 − 1) = f(p− 1)f(pq−2 + pq−3 + . . .+ p+ 1) ∈ {1, c, c2, . . . , cq−2} using our claim,
(note that we know f(p− 1) = 1 by the minimality of p).
But we also know (by Fermat’s little theorem) that q | pq−1 − 1, hence f(q) | f(pq−1 − 1).
Therefore we have that: f(pq−1 − 1) ∈ {c, c2, . . . , cq−2}.

• f(pq−1) = cq−1.

These are three different values, hence we have a contradiction by condition (2).

Solution 4B (for the main part). Let p the minimal (prime) number with f(p) = c > 1.

Lemma 4B.1. For any k ∈ N, f(1 + p+ p2 + . . .+ pk) = 1.

Proof of the Lemma, by induction. k = 0 is trivial.
k = 1 is also easy, as p+ 1 cannot be a prime, except in the case of p = 2, which is also easy. (If

f(2) = c > 1, then f(3) ∈ {1, c} by 3 = 1 + 2 and f(3) ∈ {1, c2} by 22 = 1 + 3.)
From now we suppose k ≥ 2 and f(1 + p+ . . .+ pk−1) = 1. By condition (2), we have that:

• As f(1 + p+ . . .+ pk−1) = 1 and f(pk) = ck,
we have that f(1 + p+ . . .+ pk−1) ∈ {1, ck}

• As f(1) = 1 and f(p+ . . .+ pk) = f(p)f(1 + p+ . . .+ pk−1) = c,
we also have that f(1 + p+ . . .+ pk−1) ∈ {1, c}.

If k > 1, c ̸= ck, therefore f(1 + p+ . . .+ pk) = 1. □
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Now suppose that there exists some prime q > p with f(q) > 1. Then by condition (1),

f(pq−1 − 1) = f(p− 1)f(1 + p+ . . .+ pq−2)

here f(p − 1) = 1 (by the minimality of p) and f(1 + p + . . . + pq−2) = 1 by the lemma. But we
also know (by Fermat’s little theorem) that q | pq−1 − 1, hence 1 < f(q) ≤ f(pq−1 − 1), which is a
contradiction.

Solution 5 (for the main part).

Lemma 5.1. If f(m) ̸= f(n), then f(n+m) = f(n−m) (for all n > m ∈ N).

Proof of the Lemma. By condition (2), {f(n+m), f(n−m)} ⊆ {f(n), f(m)}. We also have that:

f(n−m)f(n+m) = f(n2 −m2) ∈ {f(n)2, f(m)2}

which is only possible if f(n−m) = f(n+m) = f(n) or f(n−m) = f(n+m) = f(m). □

Now let p be the smallest (prime) number with f(p) > 1.

Claim 5.2. If p does not divide n, then f(n) = 1.

Proof of the Claim. Let n be the minimal counterexample, and and let n = dp+ r with 0 < r < p.
Here d ≥ 1 by the minimality of p.

Now 1 < f(d)f(p) = f(dp) ̸= f(r) = 1, hence by our lemma, f(dp + r) = f(dp − r) = 1,
contradiction.
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Problem 3.
An infinite sequence of positive integers a1, a2, . . . is called good if

(1) a1 is a perfect square, and

(2) for any integer n ≥ 2, an is the smallest positive integer such that

na1 + (n− 1)a2 + . . .+ 2an−1 + an

is a perfect square.

Prove that for any good sequence a1, a2, . . ., there exists a positive integer k such that an = ak for
all integers n ≥ k.

Proposed by: Joe Benton and Dominic Yeo, United Kingdom

Solution. Define the following auxiliary sequences:

b1 = a1, bn = a1 + a2 + · · ·+ an,

c1 = b1, cn = b1 + b2 + · · ·+ bn.

Observe that
cn − cn−1 = bn,

bn − bn−1 = (cn − cn−1)− (cn−1 − cn−2) = an.

Therefore,
cn = (2cn−1 − cn−2) + an

is the smallest square greater than 2cn−1 − cn−2.
Claim.

√
cn −√

cn−1 ≤ √
cn−1 −√

cn−2

Proof 1. Let cn = m2
n, cn−1 = m2

n−1, cn−2 = m2
n−2, where the value of cn is momentarily permitted

to exceed its minimum. Any value is permitted for which

bn = cn − cn−1 > bn−1 = cn−1 − cn−2.

Factoring,
(mn −mn−1)(mn +mn−1) > (mn−1 −mn−2)(mn−1 +mn−2).

In the case thatmn−mn−1 = mn−1−mn−2, this inequality clearly holds, asmn+mn−1 > mn−1+mn−2.
Thus, the minimal possible value of mn satisfies the claimed inequality.

Proof 2. Denote cn−1 = x2, cn−2 = (x− d)2. Then

2cn−1 − cn−2 = 2x2 − (x− d)2 = x2 + 2dx− d2 = (x+ d)2 − 2d2 < (x+ d)2.

It follows that cn ≤ (x+ d)2. ■
And so the sequence of positive integers

√
cn −√

cn−1 is decreasing. Any such sequence is even-
tually constant.

As a corollary, cn = (x+nd)2 for sufficiently large n, with fixed integers x and d. Along the lines
above, it becomes clear that an = cn − 2cn−1 + cn−2 = 2d2, so the sequence (an) is constant.
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Solution. We write:
s2n = Sn = a1 + (a1 + a2) + . . .+ (a1 + . . .+ an).

So, setting bn := a1 + . . .+ an, we have Sn = b1 + b2 + . . .+ bn and, in particular Sn+1 = Sn + bn+1.
Now, we study the quantity Snbn = +b1 + b2 + . . .+ bn + bn in two different ways. Since bn+1 is the
smallest integer strictly greater than bn such that b1 + . . . + bn + bn+1 is a perfect square, we must
have

b1 + b2 + . . .+ bn + bn ≥ (sn+1 − 1)2.

However, we also have

b1 + b2 + . . .+ bn + bn = Sn + bn = 2Sn − Sn−1.

Combining, we obtain

s2n ≥ s2n−1 + (sn+1 − 1)2

2
>

(
sn−1 + sn+1 − 1

2

)2

.

where the final inequality is strict since the sequence (sk) is strictly increasing. Taking a square root,
and noting that all the (sn) are integers, one obtains sn+1 − sn ≤ sn − sn−1.
Now we focus on the sequence dn = sn+1−sn. (sk) is strictly increasing thus (dk) is positive. However
we proved that dn+1 ≤ dn, so the sequence (dk) is eventually constant, so eventually sn = bn+ c and
Sn = (bn+ c)2 with some numbers b,c; then

an+2 = Sn+2 − 2Sn+1 + Sn = (b(n+ 2) + c)2 − 2(b(n+ 1) + c)2 + (bn+ c)2 = 2b2.

Remark. The key idea is to use the D difference operator on the space of sequences. That is a function
which takes a sequence as an input and outputs another sequence the following way: if (x) is the input
sequence, then

D(x) = D ((x1, x2, x3, x4, ...)) = (x2 − x1, x3 − x2, x4 − x3, ...).

Here DD(S) = (a) (with some shift), D(s) = (d). This D operator has some nice properties; if someone
studied calculus, these properties will be familiar. D(x+ y) = D(x) +D(y); D(λx) = λD(x); (x) constant
iff Dx zero ; (x) is linear iff Dx constant ; in general (x) is a polynomial with degree l + 1 iff D(x) is a
polynomial with degree l.

First we proved that sequence (d) is eventually constant, thus D(d) = DD(s) is eventually zero. There-
fore the sequence (s) is eventually a linear function, hence s2 = S is eventually a quadratic polynomial,
therefore 0 = DDD(S) = D(a), so (a) is constant eventually.
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Problem 4.
Given a positive integer n ≥ 2, determine the largest positive integer N for which there exist N + 1
real numbers a0, a1, . . . , aN such that

(1) a0 + a1 = − 1

n
, and

(2) (ak + ak−1)(ak + ak+1) = ak−1 − ak+1 for 1 ≤ k ≤ N − 1.

Proposed by: Romania

Solution 1. (ak+ak−1)(ak+ak+1) = ak−1−ak+1 is equivalent to (ak+ak−1+1)(ak+ak+1−1) = −1.
Let bk = ak + ak+1. Thus we need b0, b1, ... the following way: b0 = − 1

n
and (bk−1 + 1)(bk − 1) = −1.

There is a proper sequence b0, b1, ..., bN−1 if and only if there is proper sequence a0, a1, ..., aN , be-
cause from a a proper (ak) sequence we can get a proper (bk) sequence with bk = ak + ak+1 for
k = 0, 1, ..., N − 1 and from a proper (bk) sequence we can get a proper (ak) sequence by arbitrarily
setting a0 and then inductively defining ak = bk−1 − ak−1 for k = 1, 2, ..., N .

We prove by induction that bk = − 1
n−k

for k < n. This is true for k = 0, as b0 = − 1
n
and

bk = 1− 1

bk−1 + 1
= 1− 1

1− 1
n−k+1

= − 1

n− k

for k < n. Thus there is a proper sequence b0, b1, ..., bn−1, but it can’t be continued, because bn−1+1 =
0 so there is no bn for which (bn−1 + 1)(bn − 1) = −1.

Therefore the longest proper sequence (bk) is n-long, so the longest proper sequence (ak) is n+1
long, so N = n.

Solution 2. The required maximum is N = n.
To rule out the case N ≥ n+ 1, it is clearly sufficient to rule out the case N = n+ 1.
Assume for contradiction that a0, a1, . . . , an+1 are real numbers satisfying both conditions in the

statement. It is sufficient to show that ak + ak+1 = 0 for some k ≤ n, because then ak−1 − ak+1 = 0
so ak+1 = ak−1, therefore ak−1 + ak = 0 and so on, by backwards recursion we get that aj + aj+1 = 0
for all 0 ≤ j ≤ k, but this is a contradiction with a0 + a1 = − 1

n
.

To prove that ak + ak+1 = 0 for some k ≤ n, assume that ak + ak+1 ̸= 0 for all k ≤ n, to rewrite
the second condition in the statement in the form

1

ak + ak+1

− 1

ak−1 + ak
= 1, k = 1, . . . , n.

and sum both sides over the full range from k = 1 to n. This gives

1

an + an+1

− 1

a0 + a1
= n.

As a0 + a1 = − 1
n
, this means that 1

an+an+1
= 0, which is a contradiction. Consequently, N ≤ n.

To provide n+1 real numbers satisfying both conditions in the statement, fix a0 and go through
the telescoping procedure above to obtain

ak = (−1)ka0 +
k∑

j=1

(−1)k−j+1

n− j + 1
, k = 1, . . . , n.

This concludes the proof.
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Problem 5.
For all positive integers n, k, let f(n, 2k) be the number of ways an n×2k board can be fully covered
by nk dominoes of size 2× 1. (For example, f(2, 2) = 2 and f(3, 2) = 3.)
Find all positive integers n such that for every positive integer k, the number f(n, 2k) is odd.

Proposed by: U.S.A.

Solution. The integers n with the requested property are exactly the ones of the form 2k − 1.
In what follows, let f(m,n) denote the number of domino tilings of an m× n grid. (For conveni-

ence, we also allow m and n to be 0, in which case f(m,n) = 1.)

Claim. f(m, 2n+ 1) ≡ f(m,n) (mod 2) for all n and even m

Proof. Consider reflecting m× (2n+ 1) tilings across the central column. In this way, the tilings are
grouped into singletons and pairs, so modulo 2, f(m, 2n+1) is congruent to the number of singletons.

If a tiling is invariant under reflection in the central column, then every domino with one cell in
that column must have both cells in that column.

In other words, the central column is filled with m
2
vertical dominoes, splitting the remainder of

the grid into two m× n grids. Obeying the symmetry constraint, there are f(m,n) tilings: each of
the tilings of the left grid fixes the tiling of the right grid.

Claim. f(n, n) ≡ 0 (mod 2) for all even n ≥ 2. (Recall that f(0, 0) = 1 is odd.)

Proof. Consider reflecting n × n tilings across the diagonal. This groups the tilings into pairs, (no
tiling is grouped with itself). Hence the number of n× n tilings is even.

We are ready to complete the solution.

• If n is odd, the first claim shows that n satisfies the property if and only if 1
2
(n− 1) does.

• If n ≥ 2 is even, the second claim shows that n does not satisfy the property.

• If n = 0, then n satisfies the property, as f(m, 0) = 1 always.

This concludes the proof that the sought numbers are the ones of the form 2k − 1.

Solution 2.
Color the board as a chessboard. Consider the bipartite graph whose vertices are the squares

and the neighbors are connected by an edge. Notice that a domino tiling described in the problem
corresponds to a perfect matching in this bipartite graph, so we are interested in the number of
perfect matchings.

And that is the permanent of the (bipartite) adjacency matrix. However we need to compute it
mod 2 (over F2), so that is the determinant of that matrix.

So our goal is to decide whether the determinant is 0 or 1 mod 2, or in other world, that matrix
is singular or not. From now we compute everything mod 2. Now we understand what does it mean,
that a vector v is in the nullspace (has eigenvalue 0). But each entry of v is 0− 1, so in other words
we choose a subset of the black squares (v is the characteristic vector of that subset). So in the
language of the board, there is a nontrivial v in the nullspace iff we have a subspace of black square
such a way that each white square has even number of black chosen neighbors.

If n is even, then we can choose a subset such a way in the n× n square: the diagonal.
Now we prove similar connection between n and 2n+ 1: there is a construction for n iff we have

one for 2n+1. k is always even. If we have a construction in n× k then we have one in (2n+1)× k:
we mirror the construction to the middle row.
Now we prove that from a construction in (2n+1)×k we can make a construction in n×k. First, we
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don’t have any chosen black square in the middle row. Then the chosen black squares in the upper
(or lower) n × k rectangle is a construction for n × k. Second, we have some chosen black square
in the middle row. Because we can find a white square in the middle row such that is has only one
chosen black neighbor in the middle row. Thus this construction isn’t symmetric to the horizontal
line the symmetric difference of the construction and its reflection (to the vertical line) is a nontrivial
vector in the nullspace, thus we can use the first case.
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Problem 6.
Let ABCD be a cyclic quadrilateral with circumcentre O. Let the internal angle bisectors at A and
B meet at X, the internal angle bisectors at B and C meet at Y , the internal angle bisectors at C
and D meet at Z, and the internal angle bisectors at D and A meet at W . Further, let AC and BD
meet at P . Suppose that the points X, Y, Z,W,O and P are distinct.

Prove that O,X, Y, Z and W lie on the same circle if and only if P,X, Y, Z and W lie on the
same circle.

Proposed by: Ethan Tan, Australia

Solution 1. Let Ω be the circumcircle of the quadrilateral ABCD and let r be its radius.

First, notice that the points X, Y, Z,W are concyclic. Indeed, using oriented (modulo 180◦)
angles,

∠(XW,XY ) + ∠(ZY,ZW ) = ∠(XA,XB) + ∠(ZC,ZD) = −∠A+ ∠B
2

− ∠C + ∠D
2

= 0.

Let ω be the circle passing through these four points. Our goal is to prove that O ∈ ω occurs if and
only if P ∈ ω.

Next, we rule out the case when ABCD is a trapezium. Suppose that if ABCD is an isosceles
trapezium; without loss of generality say AB ∥ CD. By symmetry, points X, Z, O and P lie on
the symmetry axis (that is, the common perpendicular bisector of AB and CD), therefore they are
collinear. By the conditions of the problem, these four points are distinct and X and Z are on ω, so
neither O, nor P can lie on ω; therefore the problem statement is obvious. From now on we assume
that AB ∦ CD and BC ∦ AD.

SQ R

Z

C

D

B

A

Ω

ω

O
Y

X

W

P
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Let AB and CD meet at Q, and let BC and AD meet at R. Without loss of generality, suppose
that B lies between A and Q, and D lies between A and R. Now we show that line QR is the radical
axis between circles Ω and ω.

Point W is the intersection point of the bisectors of ∠A and ∠D, so in triangle ADQ, point W is
the incentre. Similary, BY and CY are the external bisectors of ∠QBC and ∠BCQ, so in triangle
BCQ, point Y is the excentre opposite to Q. Hence, both Y and W lie on the bisector of ∠DQA.

By ∠DQA = 180◦ − ∠D − ∠A = ∠B − ∠A we get

∠BY Q = ∠Y BA− ∠Y QB =
∠B
2

− ∠DQA

2
=

∠B
2

− ∠B − ∠A
2

=
∠A
2

= ∠BAW,

so the points A,B, Y,W are concyclic, and therefore QA ·QB = QY ·QW ; hence, Q has equal power
with respect to Ω and ω. It can be seen similarly that R has equal power with respect to the circles Ω
and ω. Hence, the radical axis of Ω and ω is line QR.

Let lines OP and QR meet at point S. It is well-known that with respect to circle ABCD, the
diagonal triangle PQR is autopolar. As consequences we have OP ⊥ QR, and the points P and S
are symmetric to circle ABCD, so OS ·OP = r2.

Notice that P and O lie inside Ω, so the polar line QR lies entirely outside, so S is different from
P and O. Moreover,

SO · SP = OS · (OS −OP ) = OS2 −OS ·OP = SO2 − r2,

so SO · SP is equal to the power of S with respect to Ω. Since S lies on the radical axis QR, it
has equal power with respect to the two circles; therefore, SO · SP is equal to the power of S with
respect to ω. From this, it follows that O ∈ ω if and only if P ∈ ω.

Solution 2. We will prove that the points X, Y, Z,W,O, P lie on a conic section Γ. Five distinct
points uniquely determine a conic section, therefore

X, Y, Z,W,O are concyclic ⇔ Γ is a circle ⇔ X, Y, Z,W, P are concyclic.
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Let α = ∠ACB = ∠ADB, β = ∠BDC = ∠BAC, γ = ∠CAD = ∠CBD and δ = ∠DBA =
∠DCA, where of course α+ β+ γ+ δ = 180◦. For every point ξ in the plane, let a(ξ), b(ξ), c(ξ) and
d(ξ) be the signed distances between ξ and the lines AB, BC, CD and DA, respectively, such that
the quadrilateral lies on the positive sides of these lines.

The equations of the bisectors of ∠AXW , ∠BXY , ∠CY Z and ∠DZW are a(ξ) − d(ξ) = 0,
b(ξ)− a(ξ) = 0, c(ξ)− b(ξ) = 0 and d(ξ)− c(ξ) = 0, respectively. Notice that the points X, Y, Z,W
satisfy the quadratic equations

(
a(ξ)− d(ξ)

)(
b(ξ)− c(ξ)

)
= 0 and

(
a(ξ)− b(ξ)

)(
c(ξ)− d(ξ)

)
= 0, so

a(ξ)b(ξ) + c(ξ)d(ξ) = a(ξ)c(ξ) + b(ξ)d(ξ) = a(ξ)d(ξ) + b(ξ)c(ξ) for ξ = X, Y, Z,W . (1)

Without loss of generality, suppose that ABCD is inscribed in a unit circle. Then

a(O) = cosα, b(O) = cos β, c(O) = cos γ, d(O) = cos δ. (2a)

By
a(P )

b(P )
=

BP · sin δ
BP · sin γ =

1/ sin γ

1/ sin δ
and the analogous relations we can see that

a(P ) =
k

sin γ
, b(P ) =

k

sin δ
, c(P ) =

k

sinα
, d(P ) =

k

sin β
(2b)

with some positive number k.

Now let s =
sinα sin β sin γ sin δ

k2
; then, by (2a) and (2b),

a(O)b(O)− s · a(P )b(P ) = cosα cos β − sinα sin β = cos(α + β)

c(O)d(O)− s · c(P )d(P ) = cos(γ + δ) = − cos(α + β)

a(O)b(O) + c(O)d(O) = s ·
(
a(P )b(P ) + c(P )d(P )

)
; (3a)

analogous calculation provides

a(O)c(O) + b(O)d(O) = s ·
(
a(P )c(P ) + b(P )d(P )

)
(3b)

a(O)d(O) + b(O)c(O) = s ·
(
a(P )d(P ) + b(P )c(P )

)
. (3c)

In order to find the equation of the curve Γ, choose real numbers u, v, w, not all zero, such that

u+ v + w = 0; (4)

u ·
(
a(P )b(P ) + c(P )d(P )

)
+ v ·

(
a(P )c(P ) + b(P )d(P )

)
+ w ·

(
a(P )d(P ) + b(P )c(P )

)
= 0. (5)

This is always possible, because this a system of two homogeneous linear equations with three
variables. Then the equation of Γ will be

f(ξ) = u ·
(
a(ξ)b(ξ) + c(ξ)d(ξ)

)
+ v ·

(
a(ξ)c(ξ) + b(ξ)d(ξ)

)
+ w ·

(
a(ξ)d(ξ) + b(ξ)c(ξ)

)
= 0. (∗)

As can be seen, f(X) = f(Y ) = f(Z) = f(W ) = 0 follows from (1) and (4), f(P ) = 0 follows
from (5), then f(O) = s · f(P ) = 0 follows from (3a− 3c). So, the points X, Y, Z,W,O, P all satisfy
the equation f(ξ) = 0.

Notice that f(B) = u·c(B)d(B) and f(A) = w ·b(A)c(A); since at least one of u and w is nonzero,
either A or B does not satisfy (∗). Therefore, the equation cannot degenerate to an identity.

Hence, the equation f(ξ) = 0 is at most quadratic, it is not an identity, but satisfied by
X, Y, Z,W,O, P , so these six points lie on a conic section.
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Solution 3. Let A′, B′, C ′ and D′ be the second intersection of the angle bisectors of ∠DAC,
∠ABC, ∠BCD and ∠CDA with the circumcircle of ABCD, respectively. Notice that A′ and C ′ are
the midpoints of the two arcs of BD and B′ and D′ are the midpoints of arcs corresponding to AC
so the lines A′C ′ and B′D′ intersect in O.

We will prove that the points X, Y , Z, W , P and O lie on a conic section. This is a more general
statement because five points uniquely determine a conic sections so if X, Y , Z, W and P lie on a
circle then this circle is the conic section so O also lies on this circle. In the same way if X, Y , Z,
W and O are on a circle then it also contains P .

Let E be the intersection of the lines A′B and CD′. Let F be the intersection of the lines A′D
and B′C. Finally, let G be the intesection of XY and ZW .

Now we use Pascal’s theorem five times:

1. From BDD′CAA′ we see that the points P , W and E are collinear.

2. From BB′D′CC ′A′ we see that the points Y , O and E are collinear.

3. From B′BDA′AC we see that the points X, P and F are collinear.

4. From B′D′DA′C ′C we see that the points O, Z and F are collinear.

5. From D′CB′BA′D we see that the points E, F and G are collinear.

So the opposite sides of the hexagon PXY OZW intersect at points F , G and E, which are collinear,
so by the converse of Pascal’s theorem the points X, Y , Z, W , P and O indeed lie on a conic section.


