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About LAIMA series 

In 1990 international team competition “Baltic Way” 

was organized for the first time. The competition gained 

its name from the mass action in August, 1989, when 

over a million of people stood hand by hand along the 

road Tallin - Riga - Vilnius, demonstrating their will for 

freedom. 

Today “Baltic Way” has all the countries around the 

Baltic Sea (and also Iceland) as its participants. Inviting 

Iceland is a special case remembering that it was the first 

country all over the world, which officially recognized 

the independence of Lithuania, Latvia and Estonia in 

1991. 

The “Baltic Way” competition has given rise also to 

other mathematical activities. One of them is project 

LAIMA (Latvian - Icelandic Mathematics project). Its 

aim is to publish a series of books covering all essential 

topics in the area of mathematical competitions. 

Mathematical olympiads today have become an 

important and essential part of education system. In some 

sense they provide high standards for teaching 

mathematics on advanced level. Many outstanding 

scientists are involved in problem composing for 

competitions. Therefore “olympiad curricula”, 

considered all over the world, is a good reflection of 

important mathematical ideas at elementary level. 

At our opinion there are relatively few basic ideas 

and relatively few important topics which cover almost 

all what international mathematical community has 
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recognized as worth to be included regularly in the search 

and promoting of young talents. This (clearly subjective) 

opinion is reflected in the list of teaching aids which are 

to be prepared within LAIMA project. 

Fourteen books have been published so far in 

Latvian. They are also available electronically at the 

web - page of Latvian Education Informatization System 

(LIIS) http://www.liis.lv. As LAIMA is rather a process 

than a project there is no idea of final date; many of 

already published teaching aids are second and third 

versions and will be extended regularly. 

Benedikt Johannesson, the President of Icelandic 

Society of mathematics, inspired LAIMA project in 1996. 

Being the co-author of many LAIMA publications, he 

was also the main sponsor of the project for many years. 

This book is the first LAIMA publication in English. 

It was sponsored by the Scandinavian foundation “Nord 

Plus Neighbours”. 
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Foreword 

This book is intended for the pupils who have an 

extended interest in mathematics. It can be used also by 

mathematics teachers and heads of mathematics circles. 

For understanding the contents of the book and 

solving the problems, it is enough to master the course of 

a 9-year school. The majority of problems and examples 

can already be solved by 7
th

 form pupils, a great part - 

even by 5
th

 and 6
th

 formers. 

The book contains theoretical material, examples and 

problems for independent solution. More difficult 

problems and examples are marked with asterisk (*), 

entirely difficult - with the letter “k”. 

We advise the readers to work actively with the book. 

Having read the example, please try to solve it 

independently, before you read the solution offered by 

the authors. However, you must definitely read the 

authors’ solutions - there may turn up ideas and methods 

of solution, which have been unknown to you before. 

The main thing that you should pay attention to, is 

the general line of the applied judgements, not just 

abstract formulations of theorems. 

In each chapter, among the problems offered for 

independent solution, there are many problems which 

differ just in unessential details from the examples 

analysed in the text. These problems are marked with a 

small circle (
o
). 

After finding a solution or after reading the solution 

of the example or the problem, always think over: 
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“Wasn’t it possible to solve the problem otherwise?” 

“Could it be possible to prove a stronger (more 

difficult) result with the same judgement?” 

“What similar problems could it be possible to solve 

by judging the same way?” 
 

We shall give short hints to some problems in the 

part III. 

A wide range of literature has been used in writing 

this book, also materials of mathematics Olympiads of 

more than 20 countries. The sources will be mentioned in 

part III. 

As far as we know, it is for the first time that 

Dirichlet Principle is discussed so widely, sistematizingly 

and methodically. 
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Introduction 

There are many hundreds of methods developed in 

mathematics, which are successfully applied in the 

solution of different problems. The number of such 

methods is steadily growing. Usually each method is 

envisaged for solving a comparatively small class of 

problems, and it is developed in accordance with the 

peculiarities and specific characters of this class. 

However, in mathematics there are also such 

methods, which are not connected with some specific 

group of problems; they are used in most different 

branches. Actually these are not just methods of 

mathematics, but ways of thinking which people use in 

solving of mathematical problems as well as in other 

situations of life. Getting acquainted with such methods 

is necessary for any intellectual person. 

Many theoretical methods in mathematics (and also 

in life!) are based on such a principle: “in order to 

accomplish great things one must concentrate big 

enough means in at least one direction.” One must 

certainly specify the notion “great things”, “direction”, 

“big means” in every specific situation. This book shows 

how to do it in some mathematical situations. 



7

I. INTRODUCTORY PROBLEMS 

Let us consider quite a simple problem. 

1. example. Pete has 3 rabbits and 2 hutches. All 

the rabbits are in hutches. Is there, among these 

hutches, one with at least 2 rabbits? 

You will certainly answer this question in the 

affirmative: “Sure! If there wasn’t such a hutch Pete 

would have no more than 1 rabbit in each hutch. So, there 

would be no more than 2 rabbits in the hutches. As a 

result, at least 1 rabbit would be at large, which Pete 

would not tolerate in any case.” 

But what if Pete had 1n  rabbit and n hutches? Is 

there, among these hutches definitely the hutch with at 

least 2 rabbits? 

You can solve the following problems with similar 

judgements. 

1
o
. 8 people are sitting round the table. Prove that among 

them are at least 2 born in the same day of week. 

2
o
. At school there are 370 pupils. Prove that among 

them you can find 2 pupils born on the same date. 

3
o
. In the class there are 13 pupils. Prove that you can 

find among them 2 pupils born in the same month. 

4
o
. The only village cinema has the following shows: at 

10
00

, 14
00

, 16
00

, 18
00

, 20
00

.One day 7 pupils went to the 

cinema. Prove that at least 2 of the pupils attended the 

same show. 

In all the previous solutions we have used one and 

the same method based on the theorem. 
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1-st theorem (Dirichlet Principle). 

Theorem D1. 

If more than n objects must be distributed into n 

groups, then there will definitely be the group 

containing at least 2 objects. 

Let us prove this theorem. 

 Let us presume the opposite: 

no group has more than 1 object. As the total number of 

groups is n, then no more than n objects are distributed. 

But we must divide in groups more than n objects. We 

have got a contradiction, so our presumption is wrong. 

Then, there is the group which has more than one object, 

i.e., at least two objects. 

The theorem is proved.  

We can give a more formal exposition for the reader 

who likes operations with algebraic expressions, 

equalities, inequalities etc. 

Let us presume again that there is no more than 

one object in any group. By denoting the number of 

objects in i-th group with ik  ( n;;2;1i  ), we get 

inequalities 1k1 ; 1k2 ; 1k3 ; ;  1k 1n ; 

1kn . Summing them up, we get 

11kkk n21   (n times 1) or 

nkkk n21  . But n21 kkk   is the 

number of all the objects distributed in groups, so it must 

exceed n. 

We get the contradiction which proves the theorem. 

 
Usually Dirichlet Principle is formulated as follows: 
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“If more than n rabbits must be put into n hutches, 

then at least in one hutch  there will be more than one (so, 

at least 2) rabbits.” 

Henceforth, we shall refer to this theorem as to D1. 

Applying Dirichlet Principle to problem solving, the 

very point is to find what will be “the hutch” and what 

will be “rabbits” in each problem. You can master it only 

by solving many problems. 

In the above mentioned probles the choice could be 

as follows: in 

1
o
. problem: “hutches” - days of week, “rabbits” - 

people round the table; 

2
o
. problem: “hutches” - different dates (there are 

366), “rabbits” - pupils; 

3
o
. problem: “hutches” - months, “rabbits” - pupils; 

4
o
. problem: “hutches” - shows, “rabbits” - pupils. 

Let us look at still more examples. 

2. example. The antropologysts have stated that a 

human’s number of hairs can not be bigger than 

500000. Prove that in Riga there live at least two 

persons with the same number of hairs. 

1
st
 solution. Let us try to reason like in the 1

st
 

example about rabbits. Only this time in the role of 

rabbits we have the inhabitants of Riga, but the “hutches” 

will be formed in the following way (there will be 

500001): 

In I “hutch” we shall put the bald-headed, 

in II “hutch” the persons with exactly 1 hair, 

in III “hutch” the persons with exactly 2 hairs, 

… 

in the 500001
st
 “hutch” the persons with exactly 500000 

hairs. 
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Remember :we must prove that in Riga there live at 

least 2 persons with the same number of hairs. It means 

that we must prove: there exist at least one “hutch” where 

we “have put in” at least two persons. 

Let us presume the opposite, that there isn’t such a 

hutch. So, the 1
st
 “hutch” is empty, or there is only one 

person there; also the 2
nd

 “hutch” is either empty or there 

is one person etc. 

So, in all “the hutches” there are no more than 

111   (500001 times 1) = 500001 person 

altogether. But in Riga there live more than 800000 

persons and every one of them must be in one of the 

“hutches” formed by us. In result, our presumption has 

been wrong, and we have proved what the problem 

required.   
 
 

2
nd
 solution. Let us form 500001 group where: 

in the 1
st
 group there will be the bald-headed, 

in the 2
nd

 group - persons with exactly 1 hair, 

in the 3
rd

 group - persons with exactly 2 hairs, 

… 

in the 500001
st
 group - persons with exactly 500000 hairs. 

We must divide all the inhabitants of Riga, which are 

slightly more than 800000, into these groups. According 

to D1 there will definitely be the group with at least 2 

persons, what we had to prove.   
 
 

Let us take into consideration that it is not declared 

in the solution of the problem, that in Riga there are 

exactly two and no more inhabitants with the same 

number of hairs. We just proved that you can find two 

persons with the same number of hairs amongthe 

inhabitants of Riga. It does not mean that there cannot be 
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4, 5 or 100 persons with the same number of hairs in 

Riga. 

We are not interested in the fact how many hairs 

have those two inhabitants we have found, who have the 

same number of hair; it is only important for us that such 

persons do exist. 

The judgement is based on the fact that in Riga there 

are too many inhabitants to have in each “hutch” no 

more than one of them. 

We must observe that our judgement does not give 

any indications as to the way of finding the persons with 

the same number of hair. It just guarantees that there are 

such persons somewhere in Riga. Let us take into 

consideration that the solution turned out shorter with the 

help of Dirichlet Principle. 

3. example. Antennae grow instead of hair on the 

heads of the inhabitants of Alpha planet: no more 

than 100000 on each head. According to the last 

census, there live no less than 8.000.000 

inhabitants on this planet. Prove that you will be 

able to find 80 inhabitants of Alpha planet with the 

same number of antennae. 

1
st
 solution. In this problem the inhabitants of 

other planet will be in the role of “rabbits”, but we will 

form “hutches” as follows: 

in the I “hutch” we shall put the bald-headed, 

in the II “hutch” - those with exactly 1 antenna, 

in the III “hutch” - those with exactly 2 antennae, 

… 

in the 100001
st
 “hutch” - those with exactly 100000 

antennae. 
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Let us presume that we have put all the Alpha 

inhabitants into “hutches” according to the number of 

antennae on their heads. Then, paraphrasing the 

requirement of the problem, we must prove that, 

definitely, there is the “hutch” with at least 80 

inhabitants of the planet. 

Let us take into consideration that we do not 

demand that there are exactly 80 Alpha inhabitants in the 

“hutch”. The main thing is that among 100001 “hutch” 

there is definitely one (no matter which) “hutch” with at 

least 80 inhabitants of the planet. 

Let us presume opposite, that no “hutch” has more 

than 79 inhabitants of other planet. In such a case we 

have been lazy and have put into “hutches” no more than 

079.900.779100001  Alpha inhabitants. 99.921 

inhabitants have not been distributed. It is clear that, 

distributing also these Alpha inhabitants, there will 

definitely turn up at least one “hutch” with at least 80 

inhabitants.  
 

 

The solution of this problem could be shorter if we 

had used the following generalization of Dirichlet 

Principle. 

2-nd theorem (Dirichlet Principle). 

Theorem D2. 

If more than m  n objects must be divided into 

groups, then there will definitely be the group with at 

least m + 1 object. 

Proof. Let us presume that more than m  n objects 

are divided into n groups. Let us denote with ik  the 

number of objects in the thi  group, where n,,2,1i  , 
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and let us presume the opposite, that in each group there 

are no more than m objects. 

Then in the 1
st
 group there are m or less objects, in 

the thrdnd n,,3,2   groups as well 

mk;;mk;mk m21  . 

In result in all the groups together there are only 

nmmmmkkk n21   

objects. But it is stated that more than m  n objects have 

been divided into groups. So, our presumption has been 

wrong, and there definitely exists the group with at least 

m + 1 object.  

We shall refer to this theorem as to D2 and we shall 

also call it Dirichlet Principle. 

2
nd
 solution. (using D2) 

Let us form 100001 group, where 

8000000 = 79  100001 + 99921 

Alpha inhabitants are distributed depending on the 

number of antennae (in the I group the bald-headed, in 

the II group - those with one antenna, …, in the 100001
st
 

group - those with 100000 antennae). According to D2 

there exists a group with at least 79 + 1, i.e. at least 80 

Alpha inhabitants.  
 
 

4. example. In the house there live 160 inhabitants. 

None of them is older than 78. Prove that among 

the inhabitants of the house you can find three ones 

of the same age. 

1. solution. Let us presume that among the 

inhabitants of the house you cannot find three ones of the 

same age. Then, no more than 2 persons’ age is 0 years, 

…, no more than 2 persons are 78. So, in the house there 

live no more than 158222   inhabitants 
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altogether. But, according to the terms of the problem, 

there are 160 inhabitants in the house. 

So, the presumption is wrong, and in the house there 

are more than two persons of the same age.  
 
 

2. solution. Let us divide all the 1602279  

inhabitants of the house in to 79 groups, depending on 

their age. In the 1
st
 group there will be persons whose age 

is 0, in the 2
nd

 group - those, whose age is 1 year, …, in 

the 79
th

 group - those, whose age is 78 years. 

According to D2 there will definitely turn up a group 

with at least 3 persons. Depending on the formation of 

these groups, it follows that the persons in these groups 

are of the same age, what we had to prove.  
 

 

5. example. 160 inhabitants live in the house; 

moreover, none of them is older than 78. It is 

known that at the present moment none of the 

inhabitants is 0; 1; …; 13; 54; 55; …; 59; 69; 72; 

73; …; 76 years old. Prove that you can find four 

persons of the same age among them. 

Solution. Let us again unite the persons of the same 

age in one group. Though, this time it is not useful to 

look at the 79 groups and judge the same way we did in 

the previous example. This kind of thinking will not lead 

us to solution. (You can make sure about it yourself.) 

Let us take into consideration that no person is 

included in 26 out of 79 groups. So, let us skip these 26 

groups. In result we must prove that among 79 - 26 = 53 

groups there is definitely one group including at least 4 

persons out of 160 divided into these groups. 

If in all groups there would be no more than 3 

persons, then in the house there would be no more than 

3  53 = 159 persons in total. But, according to the terms 
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of the problem, there are 160 inhabitants in the house. So, 

our presumption has been wrong.  
 
 

All the following problems can be solved by using 

D1 or D2 versions of Dirichlet Principle. 

5
o
. 34 pupils wrote a test. Nobody made more than 10 

mistakes. Prove that at least 4 pupils made the same 

number of mistakes. 

6
o
. Are there at least 4 coins of the same value among 

any 25 coins of Latvia (i.e. 1 santīms, 2 sant., 5 sant., 10., 

sant., 20.sant., 50 sant., 1 lats (Ls), 2 Ls)? 

7
o
. There are 40 pupils in the class. Is there definitely 

such a month, when no less than 4 pupils of this class 

celebrate their birthdays? 

8
o
. There are 30 classes in the school, and 1000 pupils 

learn in them. Prove that in this school there is a class, 

where no less than 34 pupils learn. 

9
o
. In the library there are 1000 books. None of the books 

has more than 80 pages. Prove that in this library there 

are at least 13 books with the same number of pages. 

10
o
. 40 delegates from 13 regions participated at the 

conference. Prove that at least from one region no less 

than 4 delegates had come. 

11
o
. Prove: out of every 15 pupils you can choose three, 

born on the same day of a week. 

12
o
. a) Prove: out of any 10 natural numbers you can 

choose two beginning in the same digit. 

 b) Prove: out of any 11 natural numbers you can 

choose two ending in the same digit. 

(Pay attention to the fact that the above mentioned 

quantity of numbers differs in both parts of the problem.) 

In the previously discussed examples all the groups 

were reciprocally of equal worth, and no differences were 
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noticed among them. Now, let us discuss an example in 

which all the groups are not of equal worth, and this 

difference has an essential influence upon the solution of 

the problem. 

6. example. Prove that among any 35 two-digit 

numbers (the first digit is not 0) you can find 3 with 

equal digital sums. 

Solution. Let us draw the following table: let us 

write along its horizontal side all the possible values of 

the first digit of the number, but along the vertical side - 

the possible values of the second digit. Let us write the 

sum of numbers of the column and the line into each 

square of the table (fig.1.). We have formed compliance 

between the numbers and the sums of their digits: 

  1 2 3 4 5 6 7 8 9 

0 1 2 3 ...      

1 2 3 ...       

2 3 ...        

3 ...         

4          

5          

6         ... 

7        ... 16 

8       ... 16 17 

9      ... 16 17 18 

 Fig.1

. 
 

You can independently make sure that all the 

two-digit numbers from 1 to 99 have been used in the 

table. In general, 18 different values of digital sum are 

possible (we can form 18 different groups). If we did as 

before, we would have no success, because we can 
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distribute 35 numbers into 18 groups so, that there are no 

more than two numbers in any of them. 

Nevertheless, we can point out that: 

 1) only one number (10 and 99) has digital sum 1 

and 18 each, 

 2) only two numbers (11; 20 and 89, 98) have 

digital sums 2 and 17 each. 

So, in these groups there cannot be more numbers 

irrespective of what 35 numbers we choose. 

Let us presume that these 4 groups are filled to 

maximum - 6 numbers placed together into them. Then 

29 numbers must be placed into the remaining 14 groups 

so, that there are no more than 2 numbers in each group. 

But according to Dirichlet Principle, it is definitely 

possible to find such a “hutch”, into which at least 3 

numbers are placed. The assertion of the problem is 

proved.  
 
 

Problems for Independent Solution. 

13
o
. Prove that among any 78 three-digit numbers (the 

first digit is not 0) it is possible to find 4 numbers with 

equal digital sums. 

14
o
. There are 32 people on the train, who are over 70. 

Prove that among them it is possible to find either 2 

persons over 80, or 4 persons of the same age and not 

over 80. 

15
*
. In the leap-year there are 366 days. Prove that out of 

any 264 days you can choose either 4 whose sums of date 

digits are 4 for each day, or 26 days with equal sums of 

date digits. 

16. 18 pupils wrote the test. One of them made 4 

mistakes, the others - less. Prove that it is possible to find 
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5 pupils who made the same number of mistakes (maybe 

none). 
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II. ABOUT THE BUILDING OF 

“HUTCHES” 

After a successful choice of groups in the initial 

problems of the previous chapter the way of further 

solution was clear. Besides it was clear from the problem 

itself, what groups must be discussed in each problem. 

However, it may happen that the groups (“hutches”) 

themselves must be constructed somehow “cunningly”, 

or some qualities of these groups must be proved before 

Dirichlet principle D1 or D2 is applied. We saw some 

examples at the end of the previous chapter. 

In this chapter we shall discuss several examples, 

paying major attention to the method of construction of 

“hutches”. 

7. example. A square table consists of 6 x 6 

squares. In each square there is written “+1”, “-

1” or “0”. Prove that, by calculating the sum of 

numbers written in each column, each line and 

each diagonal, two of the sums will be equal. 

Solution. “The objects” which we shall distribute 

will be the calculated sums. There are 14 of them. None 

of them exceeds 6 and is not smaller than (-6). So, only 

13 different values are possible for the sums: -6; -5; -4; -

3; 

-2; -1; 0; 1; 2; ;3 ;4; 5; 6. As there are more sums than 

values (more “rabbits” than “hutches”), then from D1 it 

follows: two sums with identical values will turn up.   
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8. example. The Ignorant Boy
+
 has 101 friends in 

the Blossom Town. It is known that in this town the 

inhabitants can have 10 different colours of eyes 

and 10 different colours of hair. Can you definitely 

assert that among the Ignorant Boy’s friends there 

are two with the same colour of eyes and hair? 

Solution. Let us draw a table with the parameters 

10 x 10 squares (fig. 2). Each column will serve one 

colour of hair, each line - one colour of eyes; in total 

there are 100 combinations of the colours of eyes and 

hair: each of them is depicted by one square (“hutch”). 

As there are more friends than squares, then at least in 

one “hutch” there get at least two friends; they have both 

the same colour of the eyes and of hair.  
 
 

9. example. Round the round table there are sitting 

20 persons: 11 men and 9 women. Prove that there 

are two men sitting opposite each other. 

 
 1 2 3 4 5 6 7 8 9 10 

1           
2           
3           
4           
5           
6           
7           
8           
9           

10 

 
          

 

Eyes 

Hair 

Fig. 2  

 

Fig. 3. 

6 

1 

8 

7 

6 

5 
4 

3 
2 

5 

4 

3 
1 10 

9 
2 

7 

8 

9 10 

 

Solution. Let us make 10 “hutches”: each of them 

consists of two places located opposite each other 

                                                 
+
 A person in A. Nosev’s book 
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(in the fig. 3 the places belonging to one “hutch” 

are marked with the same number from 1 to 10). As 

11 men are distributed in 10 “hutches”, then two of 

them have got into one “hutch”; both these two 

men are sitting opposite each other.  
 
 

10
*
. example. There are 4 activists at some 

institution. They form commissions for different 

undertakings. Besides, the commission may consist 

of 1; 2; 3; 4 persons. No two commissions may 

completely coincide, and their number is 9. Prove 

that among the commissions there are two, which 

have not a common member. 

Solution. Let us mark the activists with A; B; C; D. 

Let us write down all the possible commissions; all the 

commissions, except one, will be combined in pairs. 

 1) ABCD this commission has no pair 

 2) A; BCD 

 3) B; ACD 

 4) C; ABD 

 5) D; ABC 

 6) AB: CD 

 7) AC; BD 

 8) AD; BC 

Let us regard these 8 groups (7 pairs of commissions 

and one group consisting of 1 commission) as “hutches”; 

and we shall regard as “rabbits” the 9 commissions 

formed by the activists. In accordance with D1 two of 

these 9 commissions belong to one pair; but it is easy to 

see that the commissions combined in one pair have not a 

common member (the pairs are combined exactly after 

this principle).  
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11
k
. example. Pete has 100 small circles with 

numbers 1 to 100 written on them (a different 

number on each circle). The teacher told him to 

choose 4 circles and place them so to obtain a 

correct identity   +   =   +  . 

Pete’s circles had scattered on the floor and he had 

managed to gather only 21 circle, when he got the 

task. Will this quantity of circles be definitely 

enough for Pete to accomplish the teacher’s task? 

Solution. Let us think over, how many different 

pairs we can build of the circles gathered by Pete (we 

shall consider identical pairs, which differ only by the 

sequence of circles, as the same; for example  1   4  is 

the same pair as  4   1 ). 

Let us imagine that every two circles are linked with 

a string. As each of 21 circles has 20 ends of strings tied 

to them, then the total is 21  20 = 420 ends of strings; as 

each string has exactly 2 ends, there are 420 / 2 = 210 

strings. Therefore it is clear that Pete can make 210 pairs 

of circles altogether, using the gathered 21 circle. We 

shall regard these pairs as “rabbits” in the further 

judgement. 

What can the sums of numbers, included in one pair, 

be like? The value of the smallest sum is 1 + 2 = 3; the 

biggest value is 99 + 100 = 199. So, there are possible 

199 - 3 + 1 = 197 different values of the sum: 3; 4; 5; …; 

197; 198; 199. We shall regard these different values as 

“hutches”
++

, i.e., there are at least two “rabbits” in some 

“hutch”. It means that Pete has two pairs of circles, 

                                                 
++

 As there are more “rabbits” than “hutches”, then in accordance 

with D1 in some “hutch” there is more than one “rabbit”. 
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where the sums of included numbers are equal 

(identical); let us presume that A + B = C + D (the pairs 

are A, B and C, D). 

None of the numbers is included in both pairs; really, 

if, for example, it were A = C, then from A + B = C + D 

it would follow also B = D and the pairs A, B and C, D 

would not be different. 

Therefore, all four circles A, B, C, D are different, 

and so Pete can form the identity A + B = C + D out of 

them.  
 
 

Please note that after using Dirichlet principle in 

the solution of this example, the solution was not yet 

over - there followed an essential judgement on the 

difference of all four circles. We shall still find such 

situations several times. 
In the following two examples the “hutches” and 

“rabbits” will be formed very ingeniously. 

12
k
. example. During 50 days in succession Jānītis 

(Johny) solved 79 problems in total. Besides, he 

solved at least one problem in a day. Prove that it 

is possible to find several days in succession 

(maybe only one), when he solved exactly 20 

problems. 

Solution. Let us mark the number of problems 

solved by Jānītis during the first n days with an (n = 1; 2; 

3; …; 50). Then 1a1 ; 

(*)79aaaaa 5049321  . 

Let us look also at the numbers 20a1 ; 20a2 ; 

20a3 ; …; 20a 49 ; 20a50 . In accordance with (*) 

we get 

9920a20a20a20a21 504921  (*). 
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We shall regard as “rabbits” the numbers 1a ; 2a ; …; 

50a ; 20a1 ; 20a2 ; …; 20a50 ; their possible 

values - as “hutches”. There are 100 “ rabbits”. The 

possible values are from 1 to 99, therefore there are 99 of 

them - one less than the “rabbits”; we shall regard them 

(the values) as “hutches”. 

In accordance with D1, at least two “rabbits” will get 

into one “hutch” (at least two numbers will have the 

same values). It is clear that there cannot be ji aa  (if 

ji ) or 20a20a ji  (if ji ); therefore, the 

identical numbers one is from group 5021 a;;a;a  , but 

the other is from group 20a;;20a;20a 5021  . If 

20aa ji , then 20aa ji . In accordance with the 

definition of numbers 5021 a;;a;a   it means, that in 

1j -th, 2j -th, …, i-th days altogether Jānītis has 

solved exactly 20 problems.  
 

 

13
k
. example. The rectangle consists of 4 x 7 

squares. Each square is coloured either white or 

black. Prove that it is possible to find such two 

lines and two columns, where all four squares, 

which are on their points of intersection, are 

coloured in the same colour. 

Solution. Let us prove more than is demanded in the 

problem: we shall prove that such two lines and two 

columns can already be found in the rectangle with 

parameters 3 x 7 squares (i.e., within the boundaries of 

the part of the rectangle mentioned in the problem). 

A. Let us observe: in every column (it consists 

of 3 squares) it is possible to find 2 squares 
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coloured in the same colour. It follows from 

Dirichlet principle D1: colours are “hutches”, 

squares - “rabbits”. 

B. Further, let us observe: if two columns are 

coloured alike, then it is possible to find the 

above mentioned 4 squares (in both columns 

you must take one and the same pair of 

squares coloured alike, see fig. 4.). 

  

 

 

 Fig. 4. 

 

 

 

 
 

C. Let us remark that in total 8 different 

colourings of columns are possible (they all 

are shown in fig. 5.). 

  

 

 

 

Fig. 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 b. a. h. d. c. e. f. g. 

 

Further we shall discuss several situations. 

 C1. Among 7 columns there is none, whose 

squares are coloured with the same colour 

(i.e., neither type a nor type h column). In this 

case each of these 7 columns belongs to one 

of the 6 types: a, b, c, d, e, f, g. In accordance 

with D1, two columns belong to one and the 

same type, i.e., they are coloured alike. 

In accordance with point B it is possible to 

find the necessary 4 squares. 
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 C2. Let us presume that some column of the 7 is 

coloured white (i.e., it belongs to type a). If at 

least one of the 6 remaining columns belongs 

to any of the types a, b, c, d, then, looking at 

this column and the white one, it is possible 

to find the 4 squares located as required (see 

fig. 6.). 

 

Fig. 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Now it remains to discuss the situation, when 

none of the 6 remaining columns is of a, b, c, 

d type; then each of these 6 columns belongs 

to one of the 4 types e, f, g, h. In accordance 

with Dirichlet principle D1, at least two of the 

columns belong to the same type. Applying 

the judgement of B point to these two 

columns, we get the required 4 black squares. 

 C3. Some of 7 columns are all over coloured 

black. We analyse this situation like C2. All 

the situations are analysed, the problem is 

solved.  
 
 

Commentary. The solution of this problem is very 

didactic. First, note that Dirichlet principle was 

used “in two stages”: now, to state the existence of 

alike coloured columns, now further to state the 

existence of alike coloured squares inside these 

columns. 

Second, several situations were sorted, and in each 

of them Dirichlet principle was applied in a 
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different situation (6 “hutches” and 7 “rabbits”, 4 

“hutches” and 6 “rabbits”). 

Third, surprise could be caused by the fact that we 

made narrower the rectangle mentioned at the 

beginning (from 4 x 7 to 3 x 7): it may seem that 

we have deliberately passed over to a worse 

situation. Really, you can find the necessary thing 

in a bigger rectangle as well as in a smaller one! 

Test it yourself, that in the rectangle 4 x 7 you 

would not be able to make this kind of statement: 

columns consisting of 4 squares can be coloured in 

16 ways. So, remaining in the 4 x 7 rectangle, you 

would have to look for some other way of solution. 

The situation, when it is easier to solve an as-if 

more difficult problem, is very often met in 

mathematics (and also in life). 

In the following problem come next still other 

judgements after the application of Dirichlet principle. 

14. example. In the artists’ study 36 sculptures 

have been made and their mass is 490 kg, 495 kg, 

500 kg, …, 665 kg. 

Is it possible to transport all these sculptures in 7 

trucks, if the carrying capacity of each truck is 3 

tons, each truck may make only one run and you 

must not overload the truck? 

Solution. The total mass of sculptures is 20790 kg < 

< 21000 kg = 7  3000 kg. So, if instead of sculptures 

there was, for example, sand which can be emptied in 

trucks, then it could be transported according to the rules 

of the problem. 

But you must not divide the sculptures in parts. 

Therefore the fact that the total mass of sculptures is 
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smaller than the total carrying capacity of trucks does not 

prove that sculptures can be transported as indicated in 

the problem. Let us observe that 36 = 7  5 + 1 sculptures 

must be distributed for 7 trucks. In result, no less than 6 

sculptures must be loaded on one truck. But even total 

mass of 6 lightest sculptures is 490 + 495 + 500 + 505 +  

 + 510 + 515 = 3015 kg > 3000 kg, so it is bigger than the 

mass allowed for one truck. 

It means that the demands of the problem cannot be 

fulfilled.  
 
 

Further there are given the problems for 

independent solution. You can use D1 and D2 versions 

of Dirichlet principle in all these problems. The main 

thing is - choose “hutches” and “rabbits” in the 

appropriate way. 

16
o
. A square table consists of 10 x 10 squares. You write 

“+ 1”, “- 1” or “0” in each square. Prove that, when 

calculating the sums of numbers written in each line, 

each column and each diagonal, two identical sums will 

turn up among them. 

17. Are there existing 11 positive two digit numbers, 

which form an increasing arithmetical progression and 

whose digit sums also form an increasing arithmetical 

progression in the same order? 

18. There are 6 active pupils in the class. They have 

formed 30 commissions. It is known that each 2 

commissions have at least one common member. Prove 

that it is possible to form one more commission so that 

this quality remains. Besides, the membership of this new 

commission must not coincide with any of the existing 

commissions. 
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19. There are 25 pupils in the classroom. Each of them 

has blue, brown or grey eyes. It is known that among 

every 3 children there are at least two of the same age. 

Prove that it is possible to find either 3 boys or 3 girls, 

who are of the same age and with the same colour of eyes. 

20
*
. Pēterītis (Pete) has 69 boxes. Different natural 

numbers not exceeding 100 are written on the boxes (one 

number on each box). Prove that it is possible to place 4 

boxes so, that the equivalence 
 
 
 

 + 
 
 
 

 + 
 
 
 

 = 
 
 
 

 is 

fulfilled. 

21
o
. Jānītis (Johny) was preparing for mathematical 

Olympiad for 11 weeks. Every day he solved at least one 

problem, but, no to overwork himself, he solved no more 

than 12 problems during any of the weeks. Prove that it is 

possible to find several days in succession, when Jānītis 

solved exactly 21 problem altogether. 

22
*
. A rectangle consists of 5 x 41 squares. Each square 

is painted in one of two colours. Prove that it is possible 

to find such three lines and three columns, where all the 

squares on their points of intersection are painted in the 

same colour. 

23
*
. There are 65 deputies in the parliament. In none of 

the parliament commissions there work all the deputies. 

It is known that every two deputies work together exactly 

in one commission. Prove that there is such a deputy, 

who is engaged in at least nine commissions. 

24
k
. Different two-digit numbers are written on 10 cards 

(one number on each card). Prove that it is possible to 

make simultaneously two small heaps so, that the sums 

of these heaps are the same (it is allowed not to place 

some cards in any of the two heaps). 
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25. The apexes of a regular 100-gon in some order are 

numerated with natural numbers from 1 to 100 (each 

apex with a different number). We calculate the 

difference of numbers of the ends for each side (the 

smaller number is subtracted from the bigger). Prove that 

for at least two sides these differences will turn out the 

same. 

26. On one Sunday 7 friends decided to attend shows in 9 

cinemas beginning at 9
00

, 10
00

, 11
00

, …, 17
00

, 18
00

, 19
00

. 

Two friends watched each of the shows at the same 

cinema, the other 5 friends - at some other cinema. In the 

evening it turned out that each of the friends had been at 

all 9 cinemas. Prove that in each of the 9 cinemas none of 

the friends had attended at least one show. 

27
k
. 101 different natural numbers are written in a line. 

Prove that it is possible to cross out 90 of them in such a 

way, that the remaining 11 numbers would be put either 

in an increasing or diminishing order (i.e., either each 

following of the remaining numbers exceeds the 

preceding, or each following of the remaining numbers is 

smaller than the preceding). 

28
*
. The table consists of 10 x 10 squares. In each square 

there is written a number (all the numbers are different). 

It is known that in each line the numbers are increasing 

from left to right. Jānis rearranged the numbers in each 

column so, that the numbers increase downwards from 

the top in each column (the numbers were not moved 

from one column to the other). Prove that after the 

rearrangement the numbers in each line are still 

increasing from left to right. 

29. Between numbers 1 and 100 there are chosen 11 

different numbers (not definitely whole numbers!). Prove 
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that among them it is possible to find such two numbers, 

whose ratio is grater than 1, but it does not exceed 1,6. 

30. In each of the apexes of the 28-gon there must be 

written one of the letters A; B; C; D: E; F; G; H so, that 

all its sides were marked with different pairs of letters. 

(Pairs XY and YX are considered identical; sides, 

marked with one and the same letter at both ends, are not 

allowed). Can it be done? 
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III. PROBLEMS ABOUT THE 

DIVISIBILITY OF NUMBERS 

The problems about the divisibility of numbers form 

a large class of problems, where it is possible to apply 

Dirichlet principle. 

III.1. PROBLEMS CONNECTED WITH THE 

CONCEPT OF REMAINDER 

We shall remind of the main facts which must be 

remembered to understand the examples analysed in this 

chapter. 

If two whole numbers m and n are given, moreover, 

m > 0 (i.e., m - natural number), then you can divide n by 

m “with remainder”. It means that such whole numbers q 

and r are found, where 

n = q  m + r, besides mr0 . 

Number q is called quotient, but r - remainder. If 

r = 0, then it is said that n is divisible by m without 

remainder (or simply, that n is divisible by m). 

If numbers n and m are given, then the quotient q 

and remainder r are definitely unique. It is important to 

remember that, dividing by natural number m, the 

remainder can adopt only values 1m;;2;1;0  , i.e., m 

different values. 

Eamples. Dividing 12 by 7, the quotient is 1, the 

remainder 5, because 12 = 1  7 + 5. Dividing 12 

by 6, the quotient is 2, the remainder is 0, because 
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12 = 2  6 + 0. Dividing -4 by 2, the quotient is -2, 

the remainder is 0, because -4 = -2  2 + 0. 

Dividing -13 by 7, the quotient is -2, the remainder 

is 1, because -13 = -2  7 + 1. 

The following two theorems will be used. 

Theorem about the division of 

difference (TDD theorem) 

Let us presume that a, b and n are whole numbers, 

moreover, n > 0. Difference a- b is divisible by n if 

and only if a and b give the same remainders, when 

divided by n. 

 Let us prove this theorem. In the proof we must 

discuss two cases. 

1) Let us presume that a and b give the same 

remainders, when divided by n. Let us mark the 

common value of these remainders with r. Then 

rnqa 1 , rnqb 2 . By subtracting the 

second equivalence from the first one, we get 

nqqba 21  (the remainder n reduced). The 

obtained equivalence also shows that a - b is divisible 

by n (the quotient is 21 qq ). 

2) Let us presume that a - b is divisible by n and 

number b gives the remainder r, when divided by n. It 

means that rnqb 1  and nqba 2  (q1 and 

q2 - some whole numbers). Then 

rnqqrnqnqbnqa 21122 . 

From the identity rnqqa 21  we see that, 

dividing a by r, we get the quotient 21 qq  and the 
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remainder r; so really a and b give the same 

remainders, when divided by n. 

The TDD theorem is proved.  

The TDD theorem is often used together with the 

Dirichlet principle version, which we shall call D3. 

Theorem D3. 

If n objects are distributed into n groups so that in 

none of the groups there is more than one object, 

then in each group there is exactly one object. 

If D1, D2 or D3 is used together with TDD, then 

usually (but not always!) “hutches” are the possible 

values of remainder, but “rabbits” - remainders 

themselves, which are obtained by dividing some 

numbers by the respective n. 

15. example. Prove that from any 8 natural 

numbers you can choose two so, that their 

difference is divisible by 7. 

Solution. We take arbitrary natural numbers 

821 a,,a,a  . Dividing them by 7, we shall obtain the 

remainders, which we shall mark 821 b,,b,b  . 

Dividing by 7, the remainders can be only 6,,1,0   - 

seven different values altogether. It follows from 

Dirichlet principle D1, that among the remainders 

821 b,,b,b   there are at least two identical ones. 

According to TDD theorem those two numbers, 

whose remainders, divided by 7, are identical, meet the 

terms of the problem.  
 
 

31
o
. Does the assertion of the problem remain valid if 8 is 

substituted by an arbitrary natural number n, but 7 - by 

n - 1? 
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Reference: please, especially discuss the situation 

n = 1! 

16. example. It is given that a, b, c, d are arbitrary 

natural numbers. Prove that 

dcdbcbdacaba  is divisible 

by 12. 

Solution. We must prove that that the product under 

discussion (we shall mark it R!) is divisible by 3 and 4. 

Let us divide each of the numbers a, b, c, d by 3 with 

remainder. We shall obtain four remainders. They can 

have only three different values: 0, 1 and 2. In 

accordance with D1, the values of two remainders will be 

equal.The difference of the respective numbers will be 

divisible by 3 in accordance with TDD theorem. 

Therefore the whole product R will be divisible by 3. 

Let us try to decide in the same way about the 

division by 4. We shall divide each of the numbers a, b, c, 

d by 4. We shall get 4 remainders. Unfortunately, as 4 

different values of remainders are possible (0, 1, 2 and 3), 

we cannot assert that among these values will be two 

identical. 

Therefore we shall do otherwise: we shall discuss 

two possible situations. 

1) Two of the obtained remainders are equal. 

Then the difference of the respective numbers is 

divisible by 4, therefore the product R is divisible by 

4. 

2) No two of the obtained remainders are equal. 

Then, in accordance with D3, exactly one of them is 0, 

exactly one is 1, exactly one is 2 and exactly one is 3. 

But the difference of those numbers, which give the 

remainders 0 and 2, is divisible by 2 (really, 
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2121 q21q220q42q4 , so is 

divisible by 2). In alike manner also the difference of 

those numbers, which give the remainders 1 and 3, is 

divisible by 2 (the demonstration is similar, do it 

independently). 

So two brackets contained by R are divisible by 2; 

therefore R is divisible by 4. 

The problem is solved.   
 
 

17
*
. example. 100 whole numbers are written in a 

line. Prove that it is possible to choose some 

numbers written in succession (maybe one number), 

whose sum is divisible by 100. 

Solution. We have already gained certain skill, and 

our intuition tells us that this time the role of “hutches” is 

taken by the values of remainders, which can arise when 

some number is divided by 100: 99,98,,2,1,0  ; there 

are 100 such values. But what should we choose for the 

role of “rabbits”? 

Let us try to group the given numbers 

10021 A,,A,A   depending on the remainder they give 

when divided by 100. If among these numbers there are 

two, which give equal remainders, when divided by 100, 

then … nothing helps, because it does not at all mean that 

the sum of these numbers will be divisible by 100. 

Besides, there is not any guarantee that these numbers are 

written in succession in the given line. 

So, such choice of “rabbits” is not successful, and we 

must act in some other way. 

Let us discuss 100 sums (we shall name A1 a sum for 

convenience sake): 

11 AS , 



37

212 AAS , 

3213 AAAS , 

  

10021100 AAAS  , 

and let us discuss the remainders given by each sum, 

when divided by 100. So, 100 different values of 

remainders are possible. 

If any of the sums gives the remainder 0, then the 

numbers building this sum are those we were looking for 

in problem. 

However, if none of the sums is divisible by 100, 

then according to D1, among the discussed 100 sums 

there are at least two (we shall mark them Si and Sj; Si 

holds less items than Sj), which give equal remainders 

when divided by 100. Their difference ij SS  by the 

TDD theorem is divisible by 100. It is apparent that this 

difference consists of the numbers 1iA , 2iA , , 1jA , 

jA  taken from the given chain by turn in succession. 

These numbers meet the term of the problem.  
 
 

18
*
. example. Prove that there exists a natural 

number, whose last four digits are 1990 and which 

is divisible by 1991. 

Solution. Let us discuss 1991 number: 

1990A1 , 

19901990A2 , 

199019901990A3 , 

 




1991

1991 19901990A . 
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Let us divide each of them by number 1991 with 

remainder. We can get 1991 different values of 

remainders: 1990;;2;1;0  . Further we separate two 

possibilities. 

1) all the obtained remainders are different. Then, 

according to D3, among them there is also the 

remainder 0, i.e., there exists number A1, which is 

divisible by 1991. We can take it as the necessary one. 

2) Two numbers (e.g., Ai and Aj, i > j) give identical 

remainders when divided by 1991. Then the 

difference of these numbers is divisible by 1991 in 

accordance with TDD theorem. But this difference is 

  


  


timesjtimesji

ji 000000000000190019001900AA . 

To write a zero at the end of the number means to 

multiply it by 10, i.e., by 2 and by 5. It is clear that 

zeros at the end of the number have no effect on 

divisibility by 1991, because 1991 does not contain 

either 2 or 5 as divisors. 

It means that number 
  



timesji

190019001900  is divisible 

by 1991. We can take this number as the one we were 

looking for.  
 
 

19. example. Is it possible to find such a degree of 

number 3 (the index - a natural number), which 

ends on in digits 0001? 

Solution. Yes, it is possible. We shall prove it. Let 

us discuss the groups of the last four digits of numbers 
10001321 3,,3,3,3  . Four digits can build up 10 000 

different groups: 0000, 0001, 0002, …, 9998, 9999. As 

we are discussing more numbers than the different 
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groups, then for two numbers these groups will be 

identical. They will “shorten” by subtraction, and the 

difference of the respective numbers will end in 0000 or 

will be divisible by 10 000. We get 
mn 33  

q10000  (q - quotient), n > m. We shall write down 

this identity as q00010133 mnm . We see that 

133 mnm  is divisible by 10 000. 

As 
m3  will not even reduce with 10 000 (

m3  

consists of threes, but 10000 = 2  2  2  2  5  5  5  5), 

then in reality 13 mn
 is divisible by 10 000 or 

000013 mn  . From there it follows that 

00013 mn  , which we had to prove. The problem is 

solved.  
 
 

Commentary.  

1. Please note that the group of the last 4 digits of 

the number forms the remainder, which is obtained by 

dividing the given number by 10 000. So, in the 

discussed solution the role of “rabbits” again was 

taken by the remainders; and the TDD theorem was 

used though not mentioned. 

2. In the solution it would have been enough to 

discuss also only the powers 1000021 3,,3,3   and to 

observe: if among them there is a power, whose 4 last 

digits are 0001, then the necessary result is already 

obtained; if such a power is missing, then there are no 

more then 9999 chains of last four digits per 10 000 

powers, and for two powers these chains are identical. 

Further on we are judging like in the preceding 

solution. 
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3. In reality the discussion of a still smaller quantity 

of powers would have been enough, because no 

power of three can end in, for example, even number 

or number 5; therefore there are much less than 

10 000 of the possible chains (“hutches”) of last 4 

digits. 

20
*
. example. Prove that from each infinite digital 

chain it is possible to choose some digits written in 

a succession so, that the number, consisting of 

these digits written in succession in the chain, 

would be divisible by 1991. 

Solution. If in the given digital chain at least one 

element is 0, then the solution of the problem is trivial, 

because by choosing this digit we get the number 0, 

which is divisible by 1991. Therefore we shall presume 

that no member of the given infinite digital chain is equal 

with zero. 

Let us choose some element of the given chain and 

“cut out” of the chain a fragment which begins in this 

chosen element and whose length is 1992 digits. We shall 

numerate the elements of the obtained fragment without 

changing their succession, with numbers 1992,,2,1   

and mark these elements with 199221 a,,a,a  . It is 

possible to schematically show this operation as follows: 

 

a1 a2 a3 a1991 a1992 

, , ... , , ... , , ... , , , , , , 

 
where the elements of the given chain are shown with 

circles. 

Let us look at the chains of digits: 

 19921991321 a,a,,a,a,a  ; 
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 1992199132 a,a,,a,a  ; 

 199219913 a,a,,a  ; 

   

 19921991 a,a ; 

 1992a . 

(Every next chain is obtained by dismissing the first digit 

from the left side in the preceding chain). 

To each such digital chain there corresponds a whole 

number, which is obtained by wiping off all the commas 

(for example, if some of the chains is 5, 7, 3, 3, 1, then 

number 57331 corresponds to it). We have obtained 1992 

numbers. They all are different. Let us discuss the 

remainders, which arise by dividing by 1991 each of 

these numbers. Only 1991 different values of remainders 

are possible. But as there are 1992 numbers, then at least 

two remainders are identical. Let us presume that the 

number of digits in these numbers is n and k (n > k), and 

mark these numbers, by Sn and Sk. As we obtained the 

numbers with a smaller number of digits from the 

numbers with a bigger number of digits by dismissing 

one or several first digits, then the last k digits of the 

numbers Sn and Sk coincide. By subtracting the smaller 

number from the bigger we obtain the result, where at 

beginning there are the digits of the given chain taken in 

succession (the digits which are not yet included in 

number Sk), but k zeros follow after them. If we mark 

with a the above mentioned number, formed by the digits 

taken in succession from the given chain, then the result 

is  
k

000000a  or 
k10a . In accordance with TDD 

theorem this difference is divisible by 1991. But 10
k
 is 
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not even reducing by 1991, therefore a is divisible by 

1991. The necessary digital group of the chain given at 

the beginning has been found.   
 

 

21. example. Prove that among every 3 natural 

numbers it is possible to find exactly two numbers, 

whose sum is divisible by 2. 

Solution. Let us distribute all the numbers 

(“rabbits”) into two “hutches” depending on their being 

either even or odd numbers. Two (or even all 3) numbers 

will get into some “hutch”. We choose two numbers from 

one “hutch”. As the sum of both two even and two odd 

numbers is an even number (so, it is divisible by 2), the 

problem is solved.  
 
 

22. example. Prove that among every 5 natural 

numbers it is possible to find exactly three numbers, 

whose sum is divisible by 3. 

Solution. If there were not the demand for exactly 

three items, the problem could be solved just like the 

17. example; besides there would not be needed 5 

numbers, but 3 numbers would be enough. However, the 

method of the 17. example does not guarantee anything 

as regards the number of items. Therefore we must do 

otherwise. 

We shall distribute all the numbers (“rabbits”) into 

three “hutches” depending on the remainder, which each 

of the numbers gives when divided by 3 (as it is known, 

only the remainders 0, 1 and 2 are possible). Let us 

discuss two possibilities. 

1) In every “hutch” there is at least one number. Let 

us take one number from every “hutch”; let us mark 

them with 3a, 3b + 1 and 3c + 2. Then the sum of 
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these 3 numbers 2c31b3a3S  

1cba3  is divisible by 3. 

2) There is such a “hutch”, where there isn’t any 

number. It means that all five numbers are distributed 

into no more than two “hutches”; in accordance with 

D2 in some “hutch” there are at least 3 numbers (if in 

every “hutch” there were no more than two numbers, 

then in total there would not be more than four 

numbers). We take 3 numbers from one “hutch”. We 

assert that they are valid as the numbers we were 

looking for. 

Really, if they give the remainder r (one and the 

same!) when divided by 3, then we can mark them as 

3a + r, 3b + r and 3c + r and their sum is 

rcba3 , i.e., divisible by 3. The necessary fact 

is proved.  
 
 

23. example. Prove that among every 52 natural 

numbers you can find two, whose sum or difference 

is divisible by 100. 

Solution. Let us form 51 “hutch”. 

In the 1. “hutch” we shall put numbers whose remainders, 

divided by 100, are 1 or 99; 

In the 2. “hutch” we shall put numbers whose remainders, 

divided by 100, are 2 or 98; 

In the 3. “hutch” we shall put numbers whose remainders, 

divided by 100, are 3 or 97; 

 

In the 49. “hutch” we shall put numbers whose 

remainders, divided by 100, are 49 or 

51; 
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In the 50. “hutch” we shall put numbers whose 

remainders, divided by 100, are 50; 

In the 51. “hutch” we shall put numbers whose 

remainders, divided by 100, are 0. 

As there are more numbers than “hutches”, then two 

numbers will get into one hutch”. If two numbers get into 

the “hutch” 50 or 51, then both their sum and their 

difference is divisible by 100. If two numbers get into 

one of the first 49 “hutches”, then: 

 if their remainders, divided by 100, are the same, 

their difference is divisible by 100; 

 if their remainders, divided by 100, are different, 

their sum is divisible by 100 (just because of this 

property the “hutches” were built in the chosen 

way). 

The problem is solved.  
 
 

Note. The reader can easily verify that it is not possible 

to substitute number 52 by 51: if, for example, 

numbers 50; 51; 52; …; 98; 99; 100 were chosen, 

then neither the sum of any two numbers nor their 

difference would be divisible by 100. 

24. example. The squares of 5 natural numbers 

are given. Prove that it is possible to choose from 

them such two numbers, whose difference is 

divisible by 7. 

Commentary. Let us take into consideration: if the 

given numbers were not squares but arbitrary 

natural numbers, the assertion of the problem 

would not be correct; it is sufficient to discuss just 

numbers 1; 2; 3; 4; 5. The essential difference is in 

this fact: although natural numbers, divided by 7, 

can give 7 different remainders, their squares have 
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less of possible remainders. This property shows 

itself not only when the division by 7 is discussed, 

but also the division by other numbers. 

Now we shall look at two different solutions. 

1. solution. Let us check up, what remainders can 

be given by the square of the number, when divided by 7. 

We shall also discuss the situations depending on what 

remainder is given by the number itself, when divided by 

7. 

If n = 7q + 0, then n
2
 = 49q

2
; the remainder is 0. 

If n = 7q + 1, then n
2
 = 49q

2
 + 14q + 1; the remainder is 

1; 

If n = 7q + 2, then n
2
 = 49q

2
 + 28q + 4; the remainder is 

4; 

If n = 7q + 3, then n
2
 = 49q

2
 + 42q + 9; the remainder is 2 

(because 9 = 7 + 2); 

If n = 7q + 4, then n
2
 = 49q

2
 + 56q + 16; the remainder is 

2 (because 16 = 14 + 2); 

If n = 7q + 5, then n
2
 = 49q

2
 + 70q + 25; the remainder is 

4 (because 25 = 21 + 4); 

If n = 7q + 6, then n
2
 = 49q

2
 + 84q + 36; the remainder is 

1 (because 36 = 35 + 1). 

We see that only 4 different values are possible for 

the remainder of the square. In accordance with D1 two 

of the discussed squares give equal remainders, when 

divided by 7; in accordance with TDD their difference is 

divisible by 7. The problem is solved.  
 
 

2. solution. Let us take into consideration that 

bababa 22
. So, it would be sufficient for us 

to prove that among every 5 natural numbers it is 

possible to find two, either whose sum or difference is 
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divisible by 7. It can be done like in the solution of the 

23. example, discussing the following 4 “hutches”: 

I - numbers with remainder 0, when divided by 7; 

II - numbers with remainder 1 or 6, when divided by 7; 

III - numbers with remainder 2 or 5, when divided by 7; 

IV - numbers with remainder 3 or 4, when divided by 7. 

Please fill in the details yourselves.  
 
 

Problems for Independent Solution. 

31
o
. Prove that from any 11 natural numbers it is possible 

to choose two so, that their difference would be divisible 

by 10. 

32
o
. It is given that a, b, c, d, e are natural numbers. 

Prove that the product of 10 brackets 

dcebdbcbeadacaba

edec  is divisible by 288. 

33
o
. Prove that there exists a number, whose decimal 

record consist of only ones, and that it is divisible by 

1977. 

34
o
. Prove that there exists a number, whose decimal 

record consists of only ones and zeros, and it is divisible 

by 1995. 

35
o
. Does there exist such a power of number 7 with a 

natural index, which ends in the digits 001? 

36
o
. 17 whole numbers are written in a line. Prove that it 

is possible to choose some numbers written in succession 

(maybe only one number), whose sum is divisible by 17. 

37
o
. Prove that among every 17 natural numbers it is 

possible to find exactly five, whose sum is divisible by 5. 

38
o
. Prove that among every 37 natural numbers it is 

possible to find exactly seven, whose sum is divisible by 

7. 
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39. Generalize the results of the problems 37 and 38! 

40
o
. Prove that among any 502 natural numbers it is 

possible to find two, whose sum or difference is divisible 

by 1000. 

41
o
. Prove that among any 3 natural numbers it is 

possible to find two, whose difference of squares is 

divisible by 4. 

42
o
. Prove that among any 4 natural numbers it is 

possible to find two, whose difference of squares is 

divisible by 8. 

43. Prove that among any 4 natural numbers it is possible 

to find two, whose difference of cubes is divisible by 9. 

44. Prove: modifying a rational number 
n

m
 in an infinite 

decimal fraction, the length of the period does not exceed 

n - 1. 

45. Prove: if the greatest common measure (G.C.M.) of 

numbers a and b is 1, it is possible to find such natural 

number n, that a  n + 7 is divisible by b. 

46
*
. A Fibonacci chain of numbers is called such a chain, 

whose first two members are 1 and 2 (exactly in this 

order), but every following member is obtained by 

adding up both previous ones: ;34;21;13;8;5;3;2;1  

Prove that in this chain there is a number divisible by 101. 

47. Numbers from 1 to 101 were written in a chain in 

some order. After that the number of its place in the 

chain was added up to each number (1 was added up to 

the first number, 2 - to the second etc.). Prove that the 

product of all the obtained sums is an even number. 

48
k
. In an increasing arithmetic progression, which 

consists of 12 natural numbers, the difference does not 
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exceed 1995. Prove that not all elements of this 

progression are prime numbers. 

III.2. PROBLEMS CONNECTED WITH THE 

DECOMPOSITION OF NUMBER INTO THE 

PRODUCT OF PRIME NUMBERS 

Let us remind of the main facts which can be used in 

solving the problems of this item. 

1. If a and b are whole numbers and at least one of 

them is not 0, then the biggest natural number, by 

which both a and b are divisible, is called greatest 

common measure of a and b. It is denoted by G.C.M. 

(a, b). 

For example. G.C.M. (8, 6) = 2, G.C.M. (8, 11) = 1, 

G.C.M. (-4, -2) = 2,  G.C.M. (6, 0) = 6, 

2. Each natural number n > 1 can be decomposed 

into the product of prime numbers. Besides, for each 

number various decompositions may differ only by 

the order of multipliers, but not by multipliers 

themselves, or the number of their repetitions. This 

fact is called the fundamental theorem of 

arithmetics. 

For example. 8 = 2  2  2 = 2
3
; 42 = 2  3  7; 

100 = 2
2
  5

2
 etc. 

(Remember: number 1 according to the definition is 

not a prime number!) 

3. Two numbers are called reciprocal prime 

numbers if their greatest common measure is 1. By 

representing the reciprocal prime numbers into 

multipliers, no prime turns up in both representations. 

Also the other way round: if representations of two 
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numbers into prime multipliers do not contain any 

common prime number, then their greatest common 

measure is 1. 

For example. As 88 = 2
3
  11 and 121 = 11

2
 (both 

contain the prime multiplier 11, so they are 

divisible by 11), then G.C.M. (88, 121)  1; so 88 

and 121 are not reciprocal prime numbers. 

As 216 = 2
3
  3

3
 and 77 = 7  11 do not contain 

common prime multipliers, then 

G.C.M. (216, 77) = 1. 

Now we shall show how the complete or partial 

decomposition of a natural number into the product of 

prime numbers can be used by applying Dirichlet 

principle. 

25
*
. example. From numbers 1; 2; 3; …; 200 

exactly 101 number is chosen freely. Prove that 

among the chosen numbers it is possible to find two 

such numbers, from which one number is divisible 

by the other. 

Solution. We shall write each of the chosen numbers 

x in the form k2nx , where n is an odd number (for 

example, 30 = 15  2
1
, 31 = 31  2

0
, 32 = 1  2

5
, 

199 = 199  2
0
). Apparently all the odd multipliers n are 

smaller than 200. Among the numbers from 1 to 200 

there are only 100 different odd numbers. Therefore 

among 101 chosen numbers in accordance with D1 it will 

be possible to find two such numbers, whose odd 

multipliers are equal. Let us presume that they are 

numbers y2A n
 and y2B m

. As BA , then 

mn . Let us presume that n > m, then mn2
B

A
. As 
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n > m, then n - m is a natural number and mn2  - also a 

natural number. So A is divisible by B. The problem is 

solved.  
 
 

Commentary. Let us take into consideration that in 

the solution we didn’t need to discuss complete 

representations of the numbers into multipliers - it was 

sufficient to distinguish the powers of only one prime 

multiplier 2 among the other prime multipliers. 

26
*
. example. From numbers 1; 2; 3; …; 200 

exactly 101 number is chosen freely. Prove that at 

least two of the chosen numbers are reciprocal 

prime numbers. 

Solution. We make 100 “hutches”: 

1. “hutch” - numbers 1 and 2; 

2. “hutch” - numbers 3 and 4; 

 

100. “hutch” - numbers 199 and 200. 

As in 100 “hutches” 101 number is distributed, then 

two of them have got into one “hutch”. These numbers - 

let us mark them a and b - differ from each other by 1. 

We assert that G.C.M. (a, b) = 1. Really, if 

G.C.M. (a, b) = x, then both a and b are divisible by x. 

Then the difference of a and b is also divisible by x; but 

this difference is 1. The only natural number by which 1 

is divisible is 1. Therefore x = 1. The necessary fact is 

proved.  
 

 

27
k
. example. Given are 5 natural numbers which 

exceed 1 and do not exceed 120. It is known that 

none of them is a prime number. Prove that it is 

possible to find among them two such numbers, 

whose greatest common measure exceeds 1. 
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Solution. If 120n1  and n is not a prime number, 

then we can express n = a  b, where a > 1, b > 1, a and b 

are natural numbers. We assert that that either a < 11 or 

b < 11. (Really, if on the contrary we presume that 11a , 

11b , then we would obtain 121ba , which 

contradicts with the given 120ba ). We can presume 

that a < 11. As a > 1, then a can be represented as the 

product of prime numbers (maybe as such a product, 

which consists of only one multiplier, if a itself is a prime 

number). These prime multipliers do not exceed 11. We 

obtain that a (and with it also n) is divisible by some 

prime number, which does not exceed 11. Let us observe 

that prime numbers not exceeding 11 are 2; 3; 5; 7. Let us 

form 4 “hutches” and write on them “2”, “3”, “5” and “7” 

respectively. We shall place each of the 5 numbers, 

mentioned in the problem, into the “hutch”, where the 

smallest prime multiplier of this number is written. (For 

example, we place 60 into the “hutch” marked “2”, 

because 60 = 2  3  5; we in our turn place 49 in the 

“hutch” marked “7”, because 49 = 7  7). As there are 

more numbers than “hutches”, then two numbers will 

turn up, which get into one “hutch”. The G.C.M. of these 

numbers exceeds 1 (they both are divisible by the prime 

number, which is written on their common “hutch”).  
 
 

28
k
. example. 4 natural numbers are given. None 

of them is divisible by some prime number 

exceeding 4. Prove that among these numbers it is 

possible to find some (maybe only one), whose 

product is the square of some whole number. (If we 

choose only one number, then we regard this 

number itself as the product consisting of one 

multiplier.) 
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Solution. If any of the given numbers is 1, then it 

itself is a square; we can choose it. If all four given 

numbers exceed 1, then each of them can be written 

down in the form 
ba 32 , where a, b are whole numbers, 

0a  and 0b ; really, in the representation of the 

number into product of prime numbers only such prime 

numbers may turn up, which do not exceed 4, i.e., 

nothing else than 2 and 3 (maybe also only one of these 

prime numbers). 

Every number belongs to one of the 4 groups: 

A a -even number, b - even number; 

B a -even number, b - odd number; 

C a -odd number, b - even number; 

D a -even number, b - odd number. 

Further we distinguish 2 situations. 

1) There are not two numbers belonging to one of 

the groups mentioned above. 

Then, according to D3, each of these groups (so, also 

the first group) possess exactly one number. We 

discuss the number belonging to the first group; it can 

be written down in the form 2
2c

  2
2d

, where a = 2c, 

b = 2d, c and d are natural numbers or 0. It is clear 

that this number can be written down also in the form 
2dc 32 , i.e., it is the square of the natural number 

dc 32 . 

2) Two numbers (we shall mark them 
nm 32  and 

tk 32 ) are belonging to the same group. 

In accordance with the formation of groups the 

numbers m and k have identical parity (they both are 

either even numbers or both - odd numbers). In the 
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same way the n and t parities are identical. Therefore, 

m + k and n + t both are even numbers; we can mark 

u2km , v2tn , where u and v are natural 

numbers or 0. 

Then it remains to observe that the product 
v2u2tnkmtknm 32323232

2vu 32  is the square of the natural number 

vu 32 . The problem is solved.  
 
 

Problems for Independent Solution. 

49
o
. Out of numbers 1; 2; 3; …; 2n - 1; 2n we choose, 

without limitations, n + 1 number. Prove that one of the 

chosen numbers is divisible by some other. 

50. Out of odd numbers 1; 3; 5; 7; …; 99; 101 we choose 

35 numbers. Prove that one of the chosen numbers is 

divisible by some other. 

51
o
. Out of numbers 1; 2; 3; …; 2n - 1; 2n we choose 

n + 1 number. Prove that among the chosen numbers it is 

possible to find two, whose greatest common measure is 

1. 

52
o
. Given are n natural numbers, which all exceed 1 and 

are smaller than 
2

1n2 . It is known that every two 

numbers have 1 as their G.C.M. Prove that at least one of 

them is a prime number. 

53. Solve the problem mentioned in the 28
th

 example, if 

given are not 4 but only 3 numbers with the above 

mentioned properties. 

54. Given are 16 natural numbers written in a row, which 

all exceed 1. They all together have only 4 different 

prime multipliers. Prove that it is possible to choose 

some of them (maybe only one), whose product is the 
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square of a natural number and which are written in 

succession in the given row. 

55
k
. Given are 1995 natural numbers written in a row, 

which all exceed 1. None of them is divisible by any 

prime number exceeding 28. Prove that it is possible to 

choose some of these numbers, whose product is the 

fourth power of a natural number. 
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IV. DIRICHLET PRINCIPLE IN 

THE PROBLEMS ABOUT FINDING 

THE LARGEST AND THE SMALLEST 

VALUE 

We often see problems, where it is demanded to find 

the possibly biggest or possibly smallest value of some 

magnitude. More often we find mistakes of logical nature 

in the solutions of such problems. 

Let us discuss an example. 

29. example. What biggest quantity of vertexes of 

a  

12 -gon may be on one straight line? 

A whole succession of incorrect “solutions” will 

follow. 

1. “solution”. A straight line can intersect the 

contour of the 12-gon only in two points, therefore this 

greatest number is 2. 

Commentary. The author of the “solution” has 

forgotten that apart from convex polygons, for 

which the above mentioned assertion is valid, there 

exist also concave polygons, whose contours can be 

intersected by a straight line in more than two 

points (see, for example, fig. 7). So, his arguments 

are not convincing. 
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Fig. 7  

2. “solution”. Let us form all 4 “concaves”, in 

this way getting 6 vertexes on one straight line. It is not 

possible to place more such “scallops” one after the other. 

Therefore the answer is 6 (fig. 8). 

 

Fig. 8  

Commentary. But maybe the “scallops” should not 

follow one another? See, for example, fig. 9, where 

there are 7 vertexes on one straight line. 

 

C 

B A 

Y 

X 

Fig. 9.  

3. “solution”. The maximum number is 7, as it is 

seen in fig. 9. When trying to join the vertex A to these 7, 

we fail - we get 3 consecutive vertexes X, Y, A on one 

straight line; it must not be like this. 

Commentary. But if to the vertexes on this straight 

line we joined not vertex A but vertex B, as seen in 

fig. 10? We would get a 12-gon which has 8 

vertexes on one straight line. 
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C 

B 

A 

Y X 

Fig. 10  

Concluding commentary. How can we know, 

that this answer is the final? Really, it is no more 

possible to join vertex A as well as three lower 

vertexes to our straight line, but perhaps we should 

completely “dismantle” the whole construction and 

begin to form it basically otherwise? Perhaps in this 

way we could obtain 9 or even more vertexes on 

one straight line? 

Out of the discussed examples we must conclude - 

although it seems to us, that we have obtained the 

best possible result, it must not be accepted without 

proof. Intuition may deceive us, as it just happened 

3 times. 

To motivate that the biggest possible value of some 

magnitude is n, we must motivate two things: 

a) we must show an example, where this value 

really is n, 

b) we must motivate, that in no case it (the value) 

can exceed n. 

If even one of these parts of the proof is missing, 

we cannot consider the problem as solved. 

Similarly, to motivate that the smallest possible 

value of some magnitude is n, we must motivate 

two things: 

a) we must show an example, where this value 

really is n, 



58

b) we must motivate, that in no case can it be 

smaller than n. 

In problems of a similar type Dirichlet principle is 

usually used in the proofs of the second part - point 

b. Let us remark that such problems are more 

difficult than those discussed above, because of two 

reasons: 

a) we must prove two assertions, not one, 

b) the right answer is not known at the beginning, 

therefore, for example, using Dirichlet principle, it 

is not clear not only what types of “hutches” to 

form, but also - how many of them will be needed. 

Further we shall discuss several examples. 

30. example. What largest quantity of bishops can 

you put on the chessboard so that they do not beat 

one another? (Let us presume that bishops of the 

same colour beat one another). 

Solution. To solve such problem, it is necessary to 

find a number n with two properties: 

1) n bishops can be placed on the chessboard so that 

they do not beat each another, 

2) we can prove that it is not possible to place more 

than n bishops so that they do not beat one another. 

Let us prove that the answer of the problem is the 

number 14. Fig. 11 shows how we can place 14 bishops 

so, that they do not beat one another. 
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 Fig. 11  

         

        

        

        

        

        

        

        

 Fig. 12  

To prove that 14 is the biggest possible number of 

bishops, we shall apply Dirichlet principle. Really, it is 

possible to cover the whole chessboard with “diagonals” 

in the way shown by fig. 12. Every such chessboard 

square belongs at least to one of the diagonals (some - to 

two diagonals). If we place more than 14 bishops on the 

chessboard, then, according to Dirichlet principle, at least 

two of them will be located on one diagonal with no 

other bishop between them, so they will beat each 

other.  
 
 

31. example. A square consists of 8 x 8 squares. 

What smallest quantity of ”corners” (for a sample 

see fig. 13) can be cut out of the square so, that it is 

no more possible to cut any such corner out of the 

remaining part of the square? 

   

  

 Fig. 13  

Solution. We shall show that this smallest number is 

11. 
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a) We can see in fig. 14 how to achieve the 

demanded result by cutting out 11 corners. The 

coloured squares are not cut out. 

 

 
        

        

        

        

        

        

        

        

 Fig. 14   

         
        

        
        

        
        

        
        

 Fig. 15.  

b) Let us prove that a smaller quantity of corners is 

not enough. If we cut out no more than 10 corners, 

then at least 3431064  squares will not be cut 

out and remain over. They are somehow distributed 

into sixteen 2 x 2 square quadrates as seen in fig. 15. 

As 21634 , then in accordance with D2 there 

would be no less than 3 uncut squares in at least one 

quadrate. It is clear that they form a corner.  
 
 

32. example. What smallest quantity of squares 

must be painted in the quadrate consisting of 8 x 8 

squares, so that in the unpainted part it would not 

be possible to place any rectangle consisting of 

3 x 1 square? 

Solution. 

a) It is enough to paint 21 square; see, for example, 

fig. 16. 

b) It is not enough to paint less than 21 square. Let us 

discuss fig. 17. Each of the 21 rectangle, parameters 3 x 1, 

shown in this figure must have at least one painted square. 

Therefore, there must be at least 21 painted square 
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altogether. (We applied Dirichlet principle: if there were 

 20 painted squares, then one of them should be in at 

least 2 rectangles shown in fig. 17. But it cannot be like 

that.)   
 
 

         

        

        

        

        

        

        

        

 Fig. 16   

         

        

        

        

        

        

        

        

 Fig. 17  

33. example. The code of each soldier in the army 

of Illiria is a 6-digit string (admissible are also 

strings beginning with one or more zeros, where 

digits recur etc.). Every two strings must differ in at 

least two positions. 

What biggest number of soldiers can be in the army 

of Illiria? 

Solution. First, let us prove that there cannot be 

more than 100 000 soldiers. Let us take into 

consideration that there is exactly one million 6-digit 

strings altogether - from 000 000 to 999 999 included. 

Let us discuss the “tail” of each string - the string formed 

by the last 5 digits. So, for example, the “tail” of the 

string 306 977 is 06977. It is clear that exactly 100 000 

“tails” are possible - from 00 000 to 99 999. If there were 

more than 100 000, then in accordance with D1 the 

strings of at least two soldiers would have the same 



62

“tails”. Then these strings would differ by no more than 

one digit - the first one, but that is not permitted. 

Now we shall show how to build up 100 000 strings, 

which meet the condition about the difference in at least 

two places. Let us discuss all the possible “tails” (there 

are 100 000 of them) and write the last digit of the digital 

sum of each “tail” in front of it (the “tail”). (For example, 

if the “tail” is 32 726, then in front of it we write the last 

digit 0 of the sum 3 + 2 + 7 + 2 + 6 = 20, and obtain the 

string 032 726.) 

It is easy to understand: if 5 positions of two 6-digit 

strings formed in this way coincide, then the sixth 

position would also coincide. But each two strings 

obtained in this way differ at least in one position, 

because they have been obtained from different “tails”. 

So, they coincide in no more than four positions, i.e., 

they differ in at least two positions, which we had to 

prove.  
 
 

34. example. There are 5 different machine-tool 

benches in the workshop. 8 workers are hired in it. 

The training of one worker for operating 1 bench 

costs 1000 lats. It is known that every day only 5 

workers will come to work, but it is not known in 

advance - which workers. (The absent workers 

need not be the same every day.) What are the 

lowest training costs, which can guarantee the 

operation of all the machine-tool benches every 

day, irrespective of which workers have come to 

work? (One worker can operate only one bench 

every day.) 

Solution. 
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a) On the table of fig. 18 we can see how to achieve the 

aim with costs of Ls 20 000. A cross in the square means, 

that the respective worker can operate the proper  

tool-bench. Really, if all five “particularly specialized” 

workers (D, E, F, G, H) come to work, then everybody 

gets his own bench; if some of them fail to come to work, 

then the same number of “Universal specialists” have 

come instead of them and can substitute them in an 

arbitrary order. 

 Workers         

  A B C D E F G H 

Benches          

1  x x x x     

2  x x x  x    

3  x x x   x   

4  x x x    x  

5  x x x     x 

 Fig. 18  

b) Now we shall show that Ls 19 000 (i.e., 19 trainings) 

is not enough. Let us presume that only 19 trainings have 

been carried out. As 4519 , hen there is a machine-

tool bench, which no more than 3 workers can operate (if 

every bench could be operated by at least 4 workers, then 

the total number of trainings would be at least 2045 ). 

If on some day exactly these 3 workers fail to come, the 

respective bench can not be used.  
 
 

35. example. What biggest number of natural 

numbers not exceeding 100 can be chosen so, that 

no sum of any two chosen numbers would be equal 

with some third chosen number? (It is not allowed 
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to build up the sum of number with the number 

itself.) 

Solution. 

a) Choosing 51 number 50; 51; 52; …; 98; 99; 100, the 

sum of no two chosen numbers has been chosen, because 

the sum of each two chosen numbers exceeds 100. 

b) Let us prove that it is not possible to choose more than 

51 numbers. Let us mark the biggest chosen number with 

k. We shall discuss two subordinate cases. 

b1) k is an even number, k = 2m. Then 50m . Let us 

discuss the “hutches” 1m2and1 ; 2m2and2 ; 

3m2and3 ;  ; 1mand1m . There are m - 1 

“hutches” altogether. As the sum of numbers of every 

“hutch” is 2m (but 2m is among the chosen numbers!), 

then in accordance with Dirichlet principle no more than 

m - 1 numbers can be chosen from the “hutches”. Adding 

also numbers 2m and maybe m (numbers exceeding 2m 

are not chosen, because 2m was the biggest chosen 

number), we get that the common number of chosen 

numbers does not exceed 1m111m , i.e., it 

does not exceed 51. 

b2) k is an odd number, k = 2m + 1. As 1001m2 , 

then 99m2  and 
2

1
49m ; m is a whole number, 

therefore from here it follows that 49m . Discussing 

the “hutches” 1m2and1 ; 2m2and2 ;  ; 

1mand1m , like in b1 case we find, that no more 

than m + 1 numbers have been chosen; so in this case the 

number of chosen numbers does not exceed even 50.  
 
 

Problems for Independent Solution. 
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56. What largest quantity of 

a) rooks (castles), 

b) kings, 

c) queens, 

d) knights is it possible to place on the 

chessboard so, that no piece endangers the other? (We 

regard that the pieces of the same colour endanger one 

another.) 

57
*
. Solve the previous problem, if the pieces must be 

placed in the quadrate with parameters 9 x 9 squares. 

58
k
. What smallest quantity of 

e) rooks (castles), 

f) kings, 

g) bishops must be placed on the chessboard 

so, that all unoccupied squares are endangered? 

Note: a beautiful solution of a similar problem about 

knights and queens is not known. 

59
*
. What biggest number of squares is it possible to 

paint in a quadrate, which consists of a) 8 x 8, b) 7 x 7 

squares so, that no “corner”, as seen in fig. 13, is 

completely painted? 

60
k
. What is the biggest number of cars, which, moving 

from left to right within the network of roads in fig. 19, 

can rearrange in any order? The cars may change their 

speed, but they must not make a reverse motion. At the 

beginning of movement the cars are standing in a line on 

the left from A one behind another; at the end of motion 

the cars are standing in a line to the right from B one 

behind another. The roads are so narrow that the leaving 

behind is impossible. 
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B A 

Fig. 19  

61
k
. A town consists of 20 x 20 identical quadratic blocs; 

the length of the side of the bloc is 100m. The streets 

bound the blocs; a street leads also all round the town 

along its exterior contour. 

What smallest quantity of currency exchange points must 

be opened in the town, so that going out from the house 

into the street at any place, you had to walk no more than 

along two sides of a bloc to get to the nearest point? (It is 

permitted to walk only along the streets.) 

62
*
. Find what smallest quantity of squares must be 

painted in the quadrate, which consists of 8 x 8 squares, 

so that in the unpainted part it would not be possible to 

locate any 

a) rectangle consisting of 1 x 2 squares, 

b) rectangle consisting of 1 x 5 squares, 

c) figure seen in Fig. 20. a), 

d) figure seen in Fig. 20. b). 

     

    

 

   

   

 
Fig. 20 

b

) 
a) 

 

63
*
. What biggest quantity of draughts queens is it 

possible to place on the black squares of the 8 x 8 
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draught-board so, that each queen is endangered by at 

least one other queen? 

64
*
. 6 musical groups participate at the festival. Every 

day some of them give a performance, but the others 

listen. (The groups do not change their “status” within a 

day.) What is the smallest number of the days when it is 

possible to ensure, that every group has listened to all the 

other groups? 

65
*
. There are 1995 little heaps of candies, which contain 

respectively 1995;1994;;3;2;1   candies. It is possible 

to eat the same quantity of candies from several heaps at 

one stroke. What is the smallest possible number of 

strokes which ensures, that in all heaps there remains the 

same quantity of candies (maybe none)? 

66. Each of the sides and diagonals of a convex octagon 

must be painted in the same colour, so that the segments 

painted alike had no common points of contact. What 

smallest number of colours allows to do it? (We consider 

that, if there exists a common point for two or more 

differently painted segments, it is simultaneously painted 

in the colours of all these segments.) 

67. A quadrate consists of 9 x 9 squares. In each square 

there lived a little dwarf. One day all the little dwarfs 

decided to move to other squares, and each of them 

moved to such kind of square, which had a common 

corner with his previous dwelling (but not a common 

side). What is the smallest number of squares, which 

could remain uninhabited after this moving? 
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V. DIRICHLET PRINCIPLE IN 

THE PROBLEMS CONNECTED WITH 

THE ARRANGEMENTS IN STRINGS 

AND CYCLES 

In this chapter we shall discuss the problems in 

which the arrangement of objects in strings (fig. 21 a)) 

and cycles (fig. 21 b)) is discussed. In addition, the 

objects are taken from two or more groups, and there 

exist limitations as to which groups are those, whose 

objects may be situated beside one another. 

 

Fig. 21 
b) 

a) 

 

36. example. There are 2n small balls arranged in 

a row - white and black. No two balls of one colour 

can be placed beside each other. Prove that there 

are exactly n balls of each colour. 

Solution. We divide the positions of a row into n 

pairs: 2;1 ; 4;3 ; 6;5 ; ; n2;1n2 . If there were 

more than n black balls, then in one of the n pairs there 

would be two black balls; they would be placed beside 
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each other - a contradiction. If there were less than n 

black balls, then in one of the n pairs there would not be 

black balls at all; then in that pair both balls would be 

white and placed beside each other - a contradiction. So, 

there are exactly n black balls. Therefore also the number 

of the white balls is n. 

The only arrangements of the small balls meeting the 

demands of the problem are seen in fig. 22 (each black 

ball must be followed by white, each white ball - by 

black).  
 
 

 

Fig. 22  

37. example. If 2n + 1 small balls - white and 

black - are arranged in a row, and, in addition, two 

balls of one colour cannot be placed beside each 

other, then the number of one colour balls is n, but 

the number of balls of other colour is n + 1. The 

only arrangements meeting the demands of the 

problem are seen in fig. 23. 

 

Fig. 23  

Solution. We divide 2n + 1 positions into n + 1 

“hutches”: 2;1 ; 4;3 ; 6;5 ;  ; n2;1n2 ; 2n + 1 

(n “hutches” consists of 2 positions each, the last 

“hutch” - of one). Further judgement is like the solution 

of the 36
th

 example.  
 
 

 

38. example. If 2n small balls - white and black - 

are arranged in a circle, and, in addition, two balls 
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of one colour are not placed beside each other, 

then there are exactly n balls of each colour, and 

they are arranged alternately. 

 

Solution. It is like the solution of the 36
th

 example.  
 
 

39. example. If small balls - white and black - are 

arranged along a circle and there are more white 

balls than black ones, then in some place two white 

balls are situated beside each other. 

Solution. Let us distribute the black balls; let us 

presume that their number is n. Then there are n spaces 

among them. We must place more than n white balls in 

these spaces; therefore a space will turn up with at least 

two white balls in it. In this space there will be the white 

balls beside each other. The problem is solved.  
 
 

Hence an important conclusion follows: if along a 

circle an odd number of white and black small balls are 

arranged, then in some place two one-colour balls (the 

colour having more balls than other) will be situated 

beside each other. 

We recommend the reader to prove independently 

the results of 36. - 38. with a similar method, namely, by 

taking the spaces among one-colour balls as “hutches”. 

We shall often use similar ideas in solving the future 

problems. Sometimes we shall refer to the results of 

examples 36. - 39., in each case specifying what we mean 

by balls and what - by their colours. 

40. example. Numbers from 1 to 1995 (each 

number is written once) are written in some order 

along a circle. Prove that the sum of some two 

numbers written beside is an even number. 
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Solution. There are more odd numbers written than 

even numbers. Like in the solution of example 39., we 

prove that somewhere two odd numbers are written 

beside each other (the white balls - odd numbers, the 

black balls - even numbers). The sum of these numbers is 

an even number.  
 
 

41. example. A closed broken line is drawn along 

the lines of a squared sheet. Prove that the number 

of its segments is an even number. 

Solution. No two horizontal segments are situated 

exactly one behind the other in this line (in such a case 

they would not be two segments, they would make one 

segment). Likewise, no two vertical segments are situated 

exactly behind each other. But, if the number of segments 

were an odd number, then in accordance with the 

conclusion of example 39., either one or the other of 

these properties would not come true; therefore the 

number of segments is not odd; so, it is even.  
 
 

42. example. Can the chess knight move along all 

the squares of a 9x 9 quadrate so, that it gets only 

once into each square, and with the last move it 

gets back to the square where the movement 

began? 

Solution. We paint the squares in the usual way as a 

chessboard. If there existed the demanded route of the 

knight, all 99 squares could be arranged within the cycle 

in the succession the knight moves along them. As there 

are more squares of one colour than those of the other 

(because the total number is odd), then somewhere two 

one-colour squares would be beside each other in the 

cycle. But that is a contradiction, because the knight can 

move only from a black square to a white or from a white 
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square to a black. So, the presumption is wrong, and 

there is not such a route of the knight as demanded.  
 
 

43
*
. example. Three friends A, B, C are playing 

table tennis. Two of them participate in each game, 

but the third friend is standing and watching the 

game. In the next game the looser of the previous 

one gives his place to the friend who was watching 

the game he lost. It is known that A played 5 games, 

B - 11 games. Home many games did C play? 

Solution. It follows from the conditions of the 

problem, that at least 11 games have taken place. It also 

follows from the conditions, that A has not missed any 

two games played one after the other. 

Let us look at the 6 “hutches” (they are formed of the 

numbers of the first 11 games): 2;1 ; 4;3 ; 6;5 ; 

8;7 ; 10;9 , 11. 

In each of the first 5 “hutches” there must be at least 

one game played by A; in accordance with D3 in each of 

them there is exactly one game played by A. Therefore A 

has not taken part in the 11
th

 game. From here it follows 

that: 

1) there has not been the 12
th

 game (otherwise A 

would not have participated in the games 11 and 12, 

played one after the other); so, there have been 11 

games altogether, and B has participated in all of 

them, 

2) out of these 11 games B has played five with A, 

so, he played the other six games with C; 

conclusion - C has played 6 games.  
 
 

Commentary. Let us take into consideration that we 

can even conclude what the results of the first 10 

games will be - B has won all these games. There is 
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no clarity about the last, the 11
th

 game - either B or 

C may have won it. 

44
*
. example. Natural numbers from 3 to 13 are 

written along a circle (each number is written 

once). Can it happen that no two numbers written 

beside each other differ by no less than 3 and by no 

more than 5? 

Solution. The only admissible differences of the 

numbers written beside each other are 3; 4; 5. Let us 

discuss the numbers 3; 4; 5; 11; 12; 13. No two of them 

can be written beside each other. So, in 6 spaces among 

them there must be at least one other number. But for 

filling these six spaces we have only 5 numbers: 6; 7; 8; 

9; 10. So, the demands of the problem are unrealizable.  
 
 

45. example. Given are 55 natural numbers which 

do not exceed 100. Prove that among them it is 

possible to find such two numbers, whose 

difference is 9. 

Solution. Each of these 55 numbers gives some 

remainder, when divided by 9. The remainders can have 

9 values altogether: 8;7;;2;1;0  . As 16955 , 

then in accordance with D2 at least one remainder will be 

encountered at least 7 times. We shall denote this 

remainder by r. 

From 1 to 100 there are 11 numbers divisible by 9, 

12 numbers which give the remainder 1, when divided by 

9, and 11 numbers which give the remainders 2; 3; ; 7; 

8 when divided by 9. (Make sure about it independently!) 

Let us write down in a line 11 numbers, which give the 

remainder r when divided by 9: r90 , r91 , 

r92 , ; r910 . 
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Those 7 of the given 55 numbers, which, when 

divided by 9, give the remainder r, are in this row. 

Judging like in the 36
th

 example we get, that two of them 

are beside each other in this row. Their difference is 9.  
 

 

46
k
. example. A rectangle consists of 4 x 1995 

squares. Can the chess knight move along all the 

squares (moving only once into each square) and 

with the last move return to the square, where it 

began its movement? 

Solution. Let us take into the consideration, that 

painting the squares in black and white as a chess-board, 

which helped in example 42., does not help this time - in 

rectangle the number of black and white squares is the 

same. Therefore we shall do otherwise. 

First we shall divide all the squares into two groups: 

interior and exterior (see fig. 24). Apparently, the number 

of interior and exterior squares is identical. 

    ...    

   ...    

   ...    

   ...    

 Fig. 24 

Interior Exterior 

 

Let us observe that the knight can move from the 

exterior square only into the interior one. So, there are at 

least 2 x 1994 interior squares, where the knight must 

move along its route leaving the 2 x 1994 exterior 

squares (it must move from each exterior square into 

another interior square). Therefore, although there exist 

the moves of the knight leading from an interior square to 

the interior one, it must not use them - then in accordance 

with D1 the knight would get more than once into some 
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interior square, but that must not happen. For that reason 

all the moves of the knight from interior squares lead to 

the exterior squares. In accordance with the solution of 

the 38
th

 example the squares along the knight’s route take 

up their places like this: 

(1) interior  exterior interior  exterior   

interior  exterior  
 
 (we do not show the return to 

the starting square; we can take it that the cyclical 

route begins from the interior square). 

Now we shall paint the squares of the rectangle in 

the usual way of a chess-board. It is clear that 

number of black and white squares is the same. Like 

in the 38
th

 example, we get the following 

arrangement of squares along the knight’s route: 

 (2) black  white  black  

white   black  white 

or 

white  black  white   black  white 

 black. 

Comparing (1) and (2) we get, that all the exterior 

squares on the chess knight’s route are of the same 

colour, but all the interior squares on the route - in 

the other colour. But the exterior squares are both 

black and white. So the knight does not move along 

all the squares of the rectangle. We have got a 

contradiction.   
 
 

47
k
. example. Given are 33 different natural 

numbers; none of them exceeds 100. Prove that 

among them it is possible to choose such two 

numbers, whose difference is 8, 9 or 17. 

Solution. Let us distribute all the natural numbers 

from 1 to 100 into four groups with 25 numbers in each:  
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25;;2;1  , 50;;27;26  , 75;;52;51  , 

100;;78;76  . As 18433 , then at least in one of 

these groups there are no less than 9 of the given 33 

numbers; let us presume that there are n of them. We 

shall reduce all these numbers by one and the same 

magnitude so, that the smallest of them becomes 1 (in 

result of such operation the differences of the discussed 

numbers do not alter). We shall get n numbers 

9n,25xxx1 n21  . 

If any of the numbers ix  is 9, then the difference is 

found: 819xx 1i . If there is not the number 9 

among the numbers ix , we discuss the trios: 

18;10;1  

19;11;2  

20;12;3  

21;13;4  

22;14;5  

23;15;6  

24;16;7  

25;17;8  

There are 8 of them, and they contain all ix , 

ni1 . As there are at least 9 numbers ix , then some 

trio contains two of them. The difference of these 

numbers is 8, 9 or 17, and this is what is needed. 

Problems for Independent Solution. 

68
o
. Natural numbers from 1 to 17 are written along a 

circle in some kind of order (each number is written 
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once). Prove that the sum of some two numbers, written 

beside each other, is an even number. 

69. Around the round table there are sitting 1995 little 

dwarfs: Pukkas, Rotivappas, Shillishallas and Snurres. It 

is known that Pukkas are not sitting beside Rotivappas, 

and Shillishallas are not sitting beside Snurres. Prove that 

in some place two representatives of one tribe of the 

dwarfs are sitting beside. 

70
*
. 100 children are standing along a circle: 41 boys and 

59 girls. Prove that it is possible to find two boys 

between whom exactly 19 other children are standing (no 

matter if they are girls or boys). 

71
o
. The rook made some moves and returned to the 

square of the start. No two moves in succession were 

made along one straight line. Could the rook make 

exactly 1995 moves? 

72. Can the chess knight move along all the squares of a 

7 x 7 square quadrate so, that that it got to each square 

exactly once and with the last move it got back to the 

starting square? 

73
*
. Three friends A, B, C are playing tennis according to 

the rules described in example 43. It is known that they 

played 10, 15 and 17 games respectively. Who lost the 

second game? 

74
*
. Is it possible to distribute natural numbers from 1 to 

13 along a circle according to the demands of example 44 

(each number is placed exactly once)? 

75
o
. Given are 16 natural numbers not exceeding 30. 

Prove that among them it is possible to find two numbers, 

whose difference is 5. 

76
k
. The king moved along all the squares of a 9 x 9 

square quadrate, getting only once into each square. Not 
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once did the king return to the square where it started the 

move. What was the biggest possible length of the 

broken line made by the king? (We take it that the length 

of the side of the square is 1; we measure the length of 

the king’s move by the distance between the centres of 

the respective 2 squares.) 

77
*
. A quadrate consists of n x n squares; they are 

painted in the way of a chess-board so that corner squares 

are black. By one move a chess-man can get from one 

square into the other, which has a common corner with 

the square of the chess-man’s location, but not a common 

side. What is the smallest number of moves by which the 

chess-man can move along all the black squares starting 

its move from the black square? Solve this problem if 

a) n = 8, b) n = 9, c) n = 10. 

78
*
. A quadrate consists of 13 x 13 squares. A piece “the 

lion” is in one of the squares. With one move the lion can 

simultaneously move horizontally by m squares and 

vertically by n squares, where m and n are arbitrary 

natural numbers, 9m2 , 9n2 . (The numbers m 

and n can change in each move as the lion likes it. 

Besides, the lion may move to some square x only then, 

if in accordance with the above mentioned condition it 

might move also into the square which is symmetric with 

regard to one fixed diagonal of the quadrate.) Can the 

lion move along all the squares of the quadrate, getting to 

each square exactly once? It is not obligatory to return to 

the starting square by the last move. 

79
*
. A quadrate consists of 12 x 12 squares. With one 

move a piece “the tiger” is simultaneously moving by 2 

squares horizontally and by 3 squares vertically or by 2 

squares vertically and by 3 squares horizontally. Can the 
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tiger move along all the squares getting into each square 

exactly once and with his last move returning to the 

initial cell? 

80
*
. What biggest number of natural numbers not 

exceeding 100 is it possible to choose so, that none of the 

chosen numbers exceeds the other twice? 


