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About LAIMA series 

In 1990 international team competition “Baltic Way” 

was organized for the first time. The competition gained 

its name from the mass action in August, 1989, when 

over a million of people stood hand by hand along the 

road Tallin - Riga - Vilnius, demonstrating their will for 

freedom. 

Today “Baltic Way” has all the countries around the 

Baltic Sea (and also Iceland) as its participants. Inviting 

Iceland is a special case remembering that it was the first 

country all over the world, which officially recognized 

the independence of Lithuania, Latvia and Estonia in 

1991. 

The “Baltic Way” competition has given rise also to 

other mathematical activities. One of them is project 

LAIMA (Latvian - Icelandic Mathematics project). Its 

aim is to publish a series of books covering all essential 

topics in the area of mathematical competitions. 

Mathematical olympiads today have become an 

important and essential part of education system. In some 

sense they provide high standards for teaching 

mathematics on advanced level. Many outstanding 

scientists are involved in problem composing for 

competitions. Therefore “olympiad curricula”, 

considered all over the world, is a good reflection of 

important mathematical ideas at elementary level. 

At our opinion there are relatively few basic ideas 

and relatively few important topics which cover almost 

all what international mathematical community has 
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recognized as worth to be included regularly in the search 

and promoting of young talents. This (clearly subjective) 

opinion is reflected in the list of teaching aids which are 

to be prepared within LAIMA project. 

Fourteen books have been published so far in 

Latvian. They are also available electronically at the 

web - page of Latvian Education Informatization System 

(LIIS) http://www.liis.lv. As LAIMA is rather a process 

than a project there is no idea of final date; many of 

already published teaching aids are second and third 

versions and will be extended regularly. 

Benedikt Johannesson, the President of Icelandic 

Society of mathematics, inspired LAIMA project in 1996. 

Being the co-author of many LAIMA publications, he 

was also the main sponsor of the project for many years. 

This book is the second LAIMA publication in 

English. It was sponsored by the Scandinavian 

foundation “Nord Plus Neighbours”. 
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Foreword 

This book is intended for the pupils who have an 

extended interest in mathematics. It can be used also by 

mathematics teachers and heads of mathematics circles. 

For understanding the contents of the book and 

solving the problems, it is enough to master the course of 

a 9-year school. The majority of problems and examples 

can already be solved by 7
th

 form pupils, a great part - 

even by 5
th

 and 6
th

 formers. 

The book contains theoretical material, examples and 

problems for independent solution. More difficult 

problems and examples are marked with asterisk (*), 

entirely difficult - with the letter “k”. 

We advise the readers to work actively with the book. 

Having read the example, please try to solve it 

independently, before you read the solution offered by 

the authors. However, you must definitely read the 

authors’ solutions - there may turn up ideas and methods 

of solution, which have been unknown to you before. 

The main thing that you should pay attention to, is 

the general line of the applied judgements, not just 

abstract formulations of theorems. 

In each chapter, among the problems offered for 

independent solution, there are many problems which 

differ just in unessential details from the examples 

analysed in the text. These problems are marked with a 

small circle (
o
). 

After finding a solution or after reading the solution 

of the example or the problem, always think over: 
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“Wasn’t it possible to solve the problem otherwise?” 

“Could it be possible to prove a stronger (more 

difficult) result with the same judgement?” 

“What similar problems could it be possible to solve 

by judging the same way?” 
 

We shall give short hints to some problems in the 

part III. 

A wide range of literature has been used in writing 

this book, also materials of mathematics Olympiads of 

more than 20 countries. The sources will be mentioned in 

part III. 

As far as we know, it is for the first time that 

Dirichlet Principle is discussed so widely, sistematizingly 

and methodically. 
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Introduction 

There are many hundreds of methods developed in 

mathematics, which are successfully applied in the 

solution of different problems. The number of such 

methods is steadily growing. Usually each method is 

envisaged for solving a comparatively small class of 

problems, and it is developed in accordance with the 

peculiarities and specific characters of this class. 

However, in mathematics there are also such 

methods, which are not connected with some specific 

group of problems; they are used in most different 

branches. Actually these are not just methods of 

mathematics, but ways of thinking which people use in 

solving of mathematical problems as well as in other 

situations of life. Getting acquainted with such methods 

is necessary for any intellectual person. 

Many theoretical methods in mathematics (and also 

in life!) are based on such a principle: “in order to 

accomplish great things one must concentrate big 

enough means in at least one direction.” One must 

certainly specify the notion “great things”, “direction”, 

“big means” in every specific situation. This book shows 

how to do it in some mathematical situations. 
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VI. DIRICHLET PRINCIPLE IN 

THE PROBLEMS CONNECTED WITH 

THE CONCEPT OF GRAPH 

VI.1. BASIC CONCEPTS 

A graph is a picture which we get by drawing some 

(maybe only one) points and connecting some of them 

with lines (it may happen that no line is drawn). some 

examples of graphs are shown in Fig. 25 a), b), c). 

 

Fig. 25 

c) b) a) 

 

The points are called nodes, but the lines that 

connect them are edges.  

If an edge is drawn between two nodes, then it is 

only one of this kind. 

If no special contrary notice is given, we shall not 

draw the edges whose both ends are on the same node. 

When you look at the graph, it is not important how 

the nodes are placed and how the edges are drawn 

between them- if they are curved or straight! Only it is 

important, which nodes are connected by the edge and 

which are not. So, both graphs shown in Fig. 26 are 

regarded as one and the same graph. 
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Fig. 26 

b) a) 

A 

B 

C 

D 

E 

A B 

C 

D 
E 

 

The graphs are used to show the relations which can 

exist or not exist between the pairs of some kinds of 

objects. For example, if the points represent the people, 

we can make an agreement: we draw the edge between 2 

points if the respective persons are friends, and we do not 

draw the edge if they are not friends. If this agreement is 

valid, then, for example, the graph of Fig. 27 shows that 

Pēteris (Peter) is a friend of Jānis (John), Kārlis (Charles) 

and Aivars (Ivor), but he is not a friend of Juris (George). 

 

Fig. 27 

Pēteris 

Kārlis 

Aivars 
Juris 

Jānis 

 

Almost everybody has seen schemes of roads at bus 

stations, where the nodes of graphs show towns or 

villages, but the edges show the roads connecting them. 

The Fig. 28 graph shows which numbers from 1 to 7 
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have 1 as their greatest common measure (GCM) (they 

are connected by edge) and which have not. 

 

Fig. 28 

7 

6 5 
4 

3 2 

1 

 

Anybody of you could go on with the list of such 

examples for long. 

From Fig. 28 we see that we are not worried about 

the fact that 2 edges intersect each other (for example, 

edges 2-5 and 3-7). In distinction to nodes, we shall not 

mark as black circles such common points of edges in the 

figure. 

Sometimes we shall regard the edges as painted in 

two or more colours (for example, green between the 

nodes representing friends, and red between the nodes 

representing “no-friends”). As we cannot show the 

colours in a black-and-white text, in such situations we 

shall draw the edges as different types of lines (straight, 

undulating and the like). 

The number of edges comprised by the node is called 

the degree of the node. For example, in Fig. 26 the A and 

B nodes’ degrees are 2, the C node degree is 3, the D 

node degree is 1, the E node degree is 0. 

The node V degree will be marked p(V). 
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VI.2. PROBLEMS WHERE THE CONCEPT OF 

NODE DEGREE OF THE GRAPH CAN BE 

USED 

The following theorem is used in the solution of the 

problems of this item. 

Theorem about identical degrees 

(TID theorem) 

In every graph with at least two nodes it is 

possible to find two nodes with identical degrees. 

Proof. Let us presume that there are n nodes in the 

graph, 2n . Each node can be connected with 1n  of 

others at the utmost, therefore no node degree exceeds 

1n . So, all node degrees can take only the values 

1n;2n;;2;1;0  , consequently n different values. 

Let us presume the opposite, that all the node degrees are 

different. In accordance with Dirichlet principle D3, there 

is one node with the degree 0, one with the degree 1, …, 

one with the degree 1n . But it is not possible: if any 

node degree (let us mark it A) is 0, then no degree of any 

other node X is identical with 1n ; really, X is not 

connected with A at least, therefore 2nxp  (X may 

be connected with all the nodes except with itself and A). 

We have got a contradiction, so our presumption is 

wrong, and the degrees of all the nodes cannot be 

different. The theorem is proved.  

We shall show how this theorem is used to solve the 

problems. 

48. example. There are 25 pupils in the class. 

Prove that two of these pupils have the same 
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number of friends in this class (we regard that if A 

is B’s friend, so B is also A’s friend). 

1. solution. Let us show the pupils as points. We 

draw edges between the nodes showing they denote 

friends. For each pupil the number of his friends is 

identical to the respective node degree. In accordance 

with the TID theorem, there are two nodes with identical 

degrees; the respective pupils have identical number of 

friends. The problem is solved.  
 
 

It is useful to solve this problem also directly, not 

referring to the TID theorem. Let us discuss the 

following solution. 

2. solution. No pupil can have less than 0 friends 

and more than 24 friends; so, the number of friends can 

take 25 different values 24;23;;2;1;0  . The only 

possibility to avoid the situation of 2 pupils having 

identical number of friends is to achieve the situation 

where one pupil has 0 friends, one pupil - 1 friend, one - 

2 friends,  , one has 23 friends, one -24 friends (we 

refer to Dirichlet principle D3). But it is not possible: if 

somebody has 24 friends, then he is a friend to all the 

others, and there is not such a pupil who has not any 

friends at all - everybody has at least one friend (the one 

who is friend to everybody). The problem is solved.  
 
 

As you see, the solution of the problem with the help 

of the TID theorem is shorter but “less concrete”. We 

recommend that you try to solve also directly each 

problem which you are going to solve with the help of 

the TID theorem. 

49
*
. example. 1000 scientists gathered at the 

congress. In result of inquiry it was stated: if any 

two scientists have a common acquaintance at the 
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congress, then they have not an identical number of 

acquaintances. Besides, there are at least two 

scientists who know each other. Prove that it is 

possible to find the scientist who has exactly one 

acquaintance at the congress. 

Solution. Let us make a graph; nodes will show 

scientists, edges - acquaintances. Let us discuss node A 

whose degree is the biggest. From the rules of the 

problem it follows that 0Ap . If 1Ap , A can be 

taken as the scientist wanted. If nAp , where 1n , 

we shall discuss nodes n21 B,,B,B  , which are 

directly connected with A. It is clear that 1Bp 1 , 

1Bp 2 , , 1Bp n  (all Bi are connected with A); 

just like nBp 1 , nBp 2 ,  , nBp n , because 

n is the biggest node degree. Therefore 1Bp , 2Bp , 

 , nBp  are different because n21 B,,B,B   all are 

acquainted with A. Therefore, according to Dirichlet 

principle D3, among iBp  all the possible values are 

found including also 1. The respective  scientist Bi is the 

wanted one. The problem is solved.  
 
 

We recommend the reader to “translate” the solution 

independently from the “graph language” into the 

ordinary language. 

Problems for Independent Solution. 

81
o
. Several delegates exchanged handshakes at the 

conference (each couple shook hands no more than once). 

Prove that it is possible to find two delegates who have 

had the same number of handshakes. 

82. 20 teams are participating in football tournament; 

every team has to play a game with each other team. 
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Prove: no matter how the tournament is organized, at any 

moment you will be able to find two teams who have 

played the same number of games (maybe 0) by this 

moment. 

83. 10 circles are drawn in the plane. Prove that it is 

possible to find two among them which contact the same 

quantity of the drawn circles. 

84
*
. 1n1m  persons have arrived at the theatre 

performance. Prove: among them it is possible to find 

either m persons, who in couples do not know one 

another, or find such a person who knows at least n of the 

other persons. 

85. 25 teams participate in a tournament; every team 

must play one game with each other team. Prove: at any 

moment you can find either a team which has played at 

least 5 games, or 5 teams which have not played any 

game among themselves. 

86
k
. In each of 3 classes there are 30 pupils. Every pupil 

has exactly 31 friend altogether in the two other classes 

(not in his class). Prove: in each class you can find one 

pupil so, that all three of them, taken by couples, are 

friendly. 

VI.3. PROBLEMS TO BE SOLVED BY 

USING GRAPHS WITH COLOURED EDGES 

In this item we shall discuss the graphs in which 

every two different nodes are connected by an edge. 

Each edge is painted in one of the two colours 

(sometimes we shall use a bigger number of colours): red 

or green. We shall show the red edges by wavy 
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( 
  ) lines, the green edges - by straight 

lines (
 

). 

50. example. 6 persons are riding in a bus. Prove 

that it is possible to find among them either 3 

persons who all are acquainted with one another or 

such 3 persons among whom there are no 2 

persons acquainted with each other. 

Solution. Let us show the persons by the nodes of 

graph. We shall draw a red edge between the nodes if the 

respective persons do not know each other, and a green 

edge if they do. This way every two points are connected 

by either a green or a red line. What we must prove we 

can express as follows: it is possible to find 3 nodes all of 

which, among themselves, are connected by the edges of 

the same colour. 

We are discussing an arbitrary node A. There are 5 

edges leading out of it. In accordance with Dirichlet 

principle D2, at least 3 of them are either in one or the 

other colour. Let us presume that it is possible to find 3 

red edges (the other situation, when it is possible to find 

3 green edges, is quite analogous). 

We shall discuss the final points B, C, D of these red 

edges (see Fig. 29 a) ). 

 

C 

a) 

B 

A 

D 

b) 

D C 
B 

A 

c) 

D C 
B 

A 

Fig. 29  



15

If just two of them are connected by a red edge, then 

“a red triangle” is formed (for example, see Fig. 29 b) ). 

It remains to discuss the situation when all the points B, 

C, D are connected among themselves by green edges. 

But then “a green triangle” BCD is formed (see 

Fig. 29 c) ). The problem is solved.  
 
 

51. example. 10 persons are riding in a bus. Prove 

that it is possible to find among them 3 persons 

who all are acquainted with one another or 4 such 

persons among whom no 2 persons are acquainted 

with each other. 

Solution. Let us show the persons and their 

acquaintanceship just like in example 50. We must prove: 

in the respective graph it is possible to find either 3 nodes 

all connected by green edges, or 4 nodes which are all 

connected by red edges among themselves. 

We choose an arbitrary node A. Out of it there lead 9 

edges. We assert: among them it is possible to find 

either 6 red or 4 green edges. Really, if there were no 

more than 5 red edges and no more than 3 green edges, 

then the total number of edges leading out of node A 

would not exceed 8. But we know that there are 9 of 

them (or, to say it differently, 9Ap ). 

Let us discuss both possibilities separately. 

1) Among the edges leading out of A, it is possible 

to find 6 red. We are discussing their final points 

(Fig. 30 a) ). 



16

 

b) 

E 

D 
C 

B 

A 

Fig. 30 

G 

F 

E D 

C 

B 

A 

a)  

Every two of the points B, C, D, E, F, G are 

connected by a red or green edge among themselves. 

In accordance with example 50, it is possible to find 

among them 3 points all of which are connected by 

the edges of the same colour. If it is possible to find 

3 such points connected by red edges among 

themselves, then taking them together with point A, 

we get 4 points, which all are connected by red edges 

among themselves; that is what was necessary. If it 

is possible to find 3 such points connected by green 

edges among themselves, the necessary arrangement 

is obtained, too. 

2) Among the edges leading out from A it is possible 

to find 4 green ones. We are discussing their final 

points (Fig. 30 b) ). If just 2 of these final points are 

connected by a green edge, then, together with A, 

they form the wanted “green triangle”. If, on the 

contrary, every two of the points B, C, D, E are 

connected by a red edge among themselves, then 

these 4 points meet the demands of the problem. The 

problem is solved.   
 
 

52
k
. example. 17 scientists correspond with one 

another - every scientist corresponds with all the 

other 16. They write about only 3 topics in their 

correspondences; each couple of scientists 
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corresponds about only 1 topic. Prove that it is 

possible to find among them 3 scientists 

corresponding on one and the same topic among 

themselves. 

Solution. We shall show these scientists as vertexes 

of a graph. Every 2 vertexes are connected by an edge, 

which must be painted in one of 3 colours depending on 

the topic the couple of scientists are writing about. We 

must prove: it is possible to find 3 vertexes which are 

connected among themselves by the edges of the same 

colour. 

We choose an arbitrary vertex A. Out of it there lead 

16 edges; each of them is painted in one of 3 colours. In 

accordance with Dirichlet principle D2, among these 

edges it is possible to find 6 painted in the same colour 

(suppose, red). Let us discuss the final points of these 6 

vertexes. Let us set apart 2 situations. 

1) Just 2 of these final points are connected by a red 

edge. Then they, together with A, form the triangle 

wanted, whose all sides are red. 

2) No 2 of these 6 final points are connected by a red 

edge. Then every 2 of them are connected by an edge 

painted in one of the two other colours. In 

accordance with the result of example 50, among 

these 6 final points it is possible to find such 3, all of 

which are connected among themselves by the edges 

of the same colour. The problem is solved.  
 
 

Commentary. You have already seen that the 

solutions of several other problems were based on 

the result of example 49. It is not a matter of 

chance: it is quite often that we have to use this 

result in the solution of other problems. 
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Problems for Independent Solution. 

87
o
. 6 teams are participating in a tournament. Prove: at 

any moment it is possible either to find 3 teams all of 

whom have already played each with other, or to find 3 

teams among which no 2 teams have yet played each 

with other. 

88
o
. Prove: among any 6 towns it is possible either to 

find such 3 towns that, among themselves, by couples all 

are connected by airlines; or to find such three towns that 

have no direct airlines among them (we suppose that all 

airlines are return airlines). 

89
o
. Prove: among any 10 segments it is possible either to 

find such 3 which intersect by pairs, or such 4 segments 

out of which no 2 intersect. 

90
k
. Prove: among any 9 persons it is possible either to 

find such 3, all of whom are mutually acquainted, or such 

4 persons out of whom no 2 are acquainted with each 

other. 

91
*
. Using the result of problem 90, prove: 

a) among any 18 persons it is possible either to find 

such 4, who are all mutually acquainted, or such 4 

persons out of whom nobody knows any other; 

b) among any 14 persons it is possible either to find 

such 3, all of whom are mutually acquainted, or such 

5 persons out of whom nobody knows any other. 

92
k
. Using the result of example 51, prove: if natural 

numbers from 1 to 16 including are divided in 3 groups, 

then it is possible to find such numbers as x, y and z, that 

x + y = z (may be also x = y) in one group. 

Reference: look at the graph whose 17 vertexes are 

numbered from 0 to 16, and calculate for each edge the 
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difference of numbers of its final points subtracting the 

bigger number by the smaller one. 

VI.4. SOME MORE CONCEPTS 

Up to now we discussed the graphs whose both ends 

are “equal in rights”. Naturally, such graphs arise in the 

problems where “symmetric” relations are discussed, for 

example, friendship: if A is friendly with B, then also B 

is friendly with A. 

However, there exist also “non-symmetric” relations: 

for example, if Jānītis (Johny) loves Anniņa (Annie) it 

does not at all mean that also Anniņa loves Jānītis 

(though it may be like that). Still more obvious case: if 

during one round tournament team A has won over team 

B, then team B definitely has not beaten team A! 

To describe such situations, you can choose the 

direction on the edges of the graph which is marked by a 

pointer. For example, if the vertexes of the graph mean 

teams (participants of the tournament), then we can agree 

to choose the direction from A to B on the edge AB to 

say that team A has beaten team B (see Fig. 31). 

 

Fig. 31 

B A 

 

Such agreements make many judgements convenient 

for depiction and easy for understanding. We shall use 

the above mentioned agreement in all the following items 

of VI.5. 

The graph, on whose edges directions are chosen, is 

called an oriented graph (contrary to a non-oriented 

graph whose edges have no directions). 
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In the situation shown by Fig. 31 it is said that the 

edge leads out of the vertex A and leads into vertex B. 

VI.5. PROBLEMS TO BE SOLVED BY 

USING ORIENTED GRAPHS 

At first we shall discuss an example during whose 

solutions we shall turn a non-oriented graph into 

“something like” oriented. 

53. example. There are 10 participants in the 

circle of mathematics. On holidays each of them 

sent 5 greeting cards to the other participants of 

the circle. Prove that such 2 participants will turn 

up who have sent greeting cards to each other. 

Solution. Let us show the participants of the circle 

as vertexes of the graph. We shall connect every two 

vertexes by an edge. From each vertex 9 edges lead out, 

so, in total 90910  points of the edges. Each edge has 

2 points; therefore, there are 45
2

90
 edges in total. If 

participant A has sent his greetings to participant B, then 

on the edge AB we shall draw the pointer from A to B. 

Each participant has sent 5 greetings, so in total we must 

draw 50510  pointers. There are more pointers than 

edges, therefore in accordance with D1, an edge will 

appear where 2 pointers have been drawn. Participants, 

corresponding to the points of the edge, have sent their 

greetings to each other. The problem is solved.  
 
 

Commentary. Formally speaking, we cannot say that 

we have got an oriented graph as in an oriented 

graph only one direction is drawn on each edge. 
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Very extensively oriented graphs are used to 

describe different tournaments (in sport where 

drawn games are impossible) and to solve the 

problems about them. 

In all the following examples and problems of 

item VI.5, where we talk about tournaments, our 

opinion is that each team plays with each other team 

exactly one game: besides, there is not a drawn game. 

54. example. 8 teams participate in a tournament. 

Prove that, when it is over, it is possible to find 

such 4 teams A, B, C, D that simultaneously 

BA , CA , DA , CB , DB  and 

DC  (i.e., in the chain of teams ABCD every 

team has beaten all the following teams). 

Solution. We shall show the tournament as an 

orientated graph. There are 28 edges altogether. (We get 

the result 28
2

7
8  just like the number of edges in the 

solution of example 53). Each of these edges leads out of 

one of the 8 vertexes. As 43828 , i.e., 3828 , 

then, in accordance with D2, a vertex will be found where 

at least 4 edges lead out. We choose this vertex as A 

(Fig. 32). 

 

Fig. 32 

A 

 

 

Fig. 33 

Y 

X 

B 
A 

 

We look at the final points of 4 edges leading out of 

A. Now we shall take interest in edges that connect these 
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final points. There are 6
2

3
4  such edges altogether. 

Each of them leads out of one of 4 vertexes. As 6 > 4, 

then, in accordance with D1, a vertex will be found out of 

which at least 2 edges lead out within the system of the 4 

final points mentioned before. We choose this vertex as 

B (Fig. 33) and take our interest in the final points of 

both given edges (Fig. 33, X and Y). 

There is also an edge between X and Y. If it goes 

from X to Y, we choose X as C and Y as D; if it goes 

from Y to X, we choose Y as C and X as D (Fig. 34). The 

necessary result is gained, the problem is solved.   
 
 

 

Fig. 34 

D 

C 

B 
A 

 

55. example. 6 teams participate in the tournament. 

Prove that, when it is over, it is possible to find 

such 2 teams, that each of the remaining 4 has lost 

a game to at least one of these 2 teams. 

Solution. In total 15
2

5
6  games have been played 

in the tournament, so there are 15 wins. In accordance 

with Dirichlet principle D2, it is possible to find a team 

who has gained at least 3 victories. Further we 

distinguish 3 cases: 

a) In reality it is possible to find the team, who has 

gained 5 victories, i.e., it has won all the games. We 

choose this team as one of the wanted; we choose the 

other one arbitrarily. 
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b) In reality it is possible to find the team, who has 

won 4 games but lost 1 game. We choose this team 

and the one to whom this team has lost. 

c) There is team A, who has exactly 3 wins (and 

consequently 2 losses - let us presume it is against 

teams B and C). One of the teams B and C has won 

their mutual game; we presume that CB . Then 

we choose teams A and B. We have discussed all the 

situations, the problem is solved.  
 
 

Problems for Independent Solution. 

93
o
. Each of 2n chatterboxes has got to know thrilling 

news about n others. Prove: it is possible to find 2 

chatterboxes who have got to know thrilling news about 

each other. 

94
o
. 16 teams participate in a tournament. Prove that at 

the end of the tournament you can choose 5 teams out of 

them and mark them A, B, C, D, E so, that in the string 

ABCDE each team has gained victory over all following 

ones. 

95. 14 teams participate in a tournament. Prove that after 

it is over you can choose 3 teams so, that each of the 

other 11 has lost the game to at least one of these 3 teams. 

96
*
. Solve the above problem, if from 30 teams you must 

choose such 4 teams so, that each of 26 others would 

have lost game to at least on of these 4 teams. 

97
k
. Solve problem 96 if number 14 is substituted by 18, 

and 11 - by 15. 

98
*
. 17 teams participate in a tournament. Prove that at 

any moment it is possible either to find 5 teams among 

whom no 2 teams have played a game with each other, or 
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to find 5 teams which can be marked by A1, A2, A3, A4, 

A5 so, that 54321 AAAAA . 
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VII. METHOD OF THE SUM 

ESTIMATION 

VII.1. MORE DETAILED ANALYSIS OF 

DIRICHLET PRINCIPLE 

(You may skip this item, when you read it for the 

first time!) 

Suppose we must solve the following task. 

P1 11 little bags of sugar, each weighing 1 kg, are 

somehow placed in 10 boxes. Prove that that there 

is a box containing at least 2 kgs of sugar. 

Let us give the solution. 

1. step. We assert that at least in one box there is 

more than 1 kg sugar. Really, if in each box there were 

no more than 1 kg of sugar, then in all 10 boxes there 

would be no more than 10 kgs of sugar in total. But there 

are 11 kgs altogether. So, in at least one box the amount 

of sugar exceeds 1 kg. 

2. step. If the amount of sugar in the box exceeds 

1 kg, then there is more than 1 bag in this box. So, 

there are at least 2 bags, so at least 2 kgs of sugar. 

The problem is solved.  
 
 

Now let us discuss the following task. 

P2 11 kgs of granulated sugar are somehow poured in 

10 boxes. Can you assert that at least in 1 box there 

are not less than 2 kgs of sugar? 
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Certainly not! It may occur that in each box there is, 

for example, 
10

1
1  kg of sugar. Then in total there are 

11 kgs, but in no box the amount of sugar is either 2 kgs 

or more than 2 kgs. Which part of our proof was valid for 

problem P1 but is not valid for problem P2 any more? 

The first step of the solution remains correct also in 

this case; make yourself sure about it independently. But 

the second step for problem P2 is not useful any more. 

An essential difference: in problem P1 the amount of 

sugar in each box is expressed by a whole number of 

kilograms, but not so in problem P2. A whole number 

exceeding 1 is at least 2; on the contrary, an arbitrary 

number (not definitely whole) exceeding 1 may also be 

smaller than 2 (for example, number 1.1). 

It is not difficult to understand that in reality the 

application of Dirichlet principle in the form of D1 or D2 

in all situations is carried out according to the following 

scheme: 

1) Some of the theorems is applied: 

T1: if N21N21 aaaxxx  , then at 

least for one i the inequality ii ax  holds; 

T2: if N21N21 aaaxxx   then at 

least for one i the inequality ii ax  holds; 

T3: if N21N21 aaaxxx  , then at 

least for one i the inequality ii ax  holds; 

T4: if N21N21 aaaxxx  , then at 

least for one i the inequality ii ax  holds; 

(These theorems are proved very simply with the 

help of summing up assuming the contrary; we 
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advise the reader who wants to practise algebra to do 

it independently.) 

2) If, in addition, it follows from the conditions of 

the problem that ix  are whole numbers, then out of 

the obtained inequalities more powerful ones are 

gained. 

For example, from 8.4x  in this case follows 

5x ; from 6x  follows 7x ; from 2.1x  

follows 1x ; from 4x  follows 3x  etc. 

It is quite often that in solving the problems the 

first part of the above mentioned argument is 

enough; it is not necessary to approximate the 

number. 

We shall show the examples of such solutions in the 

next item. The solutions resemble the application or 

proof of Dirichlet principle, but, to say it more simply, 

“the approximation is missing” or no special “hutches” 

are introduced like in case of Dirichlet principle; they 

speak about the sum itself, not about its division into 

“hutches”. 

VII.2. EXAMPLES OF ESTIMATION  

OF THE SUM 

56. example. Prove: out of 10 different natural 

numbers it is possible to find two whose sum is at 

least 19. 

Solution. Let us arrange these 10 numbers in an 

increasing order: A < B < C < D < E < F < G < H < I < J. 

As A is a natural number, 1A . As B > A, we get 2B . As 

C > B, we get 3C . In a similar way we get 4D , 5E , 

6F , 7G , 8H , 9I , 10J . Therefore 
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19109JI . So, we can take both bigger numbers as 

the wanted ones.  
 
 

57. example. The sum of five numbers is 10. Prove 

that out of them it is possible to find two, whose 

sum is at least 4. 

Solution. We arrange the numbers in an undimishing 

order: EDCBA . We presume that 4ED . 

Then from these inequalities it follows that also 4CB . 

As 4CB  and CB , then B < 2. (Really, if it were 

2B , then from CB  it would follow 2C  and 

4CB .) As BA  and B < 2, then A < 2. Summing up 

the inequalities A < 2, 4CB , 4ED , we get 

10EDCBA , which contradicts the given. so ,the 

presumption is wrong, and 4ED . The problem is 

solved.  
 
 

58. example. 21 boy has 2 lats
*
 altogether. Prove 

that it is possible to find such two boys who have 

the same amount of money. 

Solution. Let us presume from the contrary that all 

the boys have different amount of money. It is clear that 

for each boy it can be expressed by a whole number of 

santims
*
. Judging like in the solution of example 56, we get 

that the common amount of money is at least 

2102019210   santims. It is a contradiction 

because the common amount of money is 200 santims. So, our 

presumption is wrong. The problem is solved.  
 
 

59
*
. example. A table consists of 5 x 5 squares. 

Some number is written in each square; the sum S 

of all the written numbers is positive. Prove that the 

lines of the table can be rearranged in such a 

                                                 
*
 1 lat = 100 santims (currency of Latvia) 
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succession (the order of the numbers is not 

changed within any line) that the sum of numbers 

written on the main diagonal of the obtained table 

(see Fig. 35) is positive. 

      

     

     

     

     

 Fig. 35 
 

 1 5 4 3 2 

2 1 5 4 3 

3 2 1 5 4 

4 3 2 1 5 

5 4 3 2 1 

 Fig. 36  

Solution. We discuss 5 different arrangements of the 

lines: 1) the initial, 2) the one obtained from the initial 

removing the upper line and placing it at the bottom, 3) 

the one obtained from the second removing the upper line 

and placing it at the bottom, 4) the one, similarly 

obtained from the third, 5) the one which is similarly 

obtained from the fourth. 

We shall mark the sums of numbers of the main diagonal 

in these arrangements by A; B; C; D; E. It is easy to 

understand that each number is on the main diagonal exactly 

in one arrangement (in Fig. 36 in each square there is written 

the number of the arrangement in which it goes to the main 

diagonal). Therefore, SEDCBA . As S > 0, 

someone of the items has to be positive. The arrangement 

corresponding to it is good as the wanted one. The problem is 

solved.  
 
 

60. example. Given is that a and b are real 

numbers. Prove that there exists a real root for at 

least one of the equations 0bax2x 2
; 

01bx2ax 2
; 0ax2bx 2

. 
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Solution. If even one of the numbers a, b is 0, then 

such is the third equation (test it independently). If 0a  

and 0b , then all the equations are quadratic equations; 

their discriminants are baD 2
1 , abD 2

2  and 

ab1D3 . The sum of all discriminants 

abba1baDDD 22
321  

01b1aba
2

1 222
, so someone of the 

discriminants is not negative; the corresponding equation 

has real roots.  
 
 

61. example. The table consists of 8 x 8 squares. 

Different natural numbers from 1 to 64 are written 

in them - one number in each square. Prove that 

there exist 2 squares with a common side, such that 

the difference of the numbers written in them is at 

least 5. 

Solution. In some square there is written 1, in some 

square - 64. Let us discuss the shortest “horizontal - 

vertical” way from the first square to the second (see, for 

example, Fig. 37). 

  

 

 

Fig. 37  

This way consists of no more than 14 steps, in each 

step moving from the square to such a square which has a 

common side with the previous one. If we made each 

step among the squares, where the difference of the 
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written numbers does not exceed 4, then the difference 

between the numbers written in the initial and in the final 

squares would be no more than 56144 ; but it is 

63164 . 

Conclusion: on the above discussed way from 1 to 

64 in some step we have found two squares beside each 

other, where the difference of the written numbers is at 

least 5.  
 
 

62
k
. example. The table consists of 17 x 17 

squares. In each square there is written one natural 

number from 1 to 17; each such number is written 

in exactly 17 squares. Prove that it is possible to 

find such a line or such a column, where at least 5 

different numbers are written. 

Solution. Let us call the total number of the columns 

and lines, each containing at least one copy of the 

number n, a distribution of n, denoting it by In. First we 

shall show that the distribution of each number is at least 

9. Really, if some number is found in x lines and y 

columns, then it is not found anywhere outside the 

intersection points of these lines and columns - so, it is 

written in no more than yx  squares. Therefore there 

must be 17yx . From the inequality xy2yx  it 

follows that yxI  8172 . Then 9I , as I is a 

natural number. Now we shall discuss the sum 

1721 IIIS  . From the previously proved it 

follows 153179S . 

It is clear that 17211721 rrrIII   

1721 kkk  , where ir  is the number of 

different numbers in the i
th

 line and ik  is the number of 
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different numbers in the i
th

 column (belonging of each 

number to some line or some column gives “investment” 

1 in both the left and the right side of this equivalence). 

As the sum of 34 items is not smaller than 153, then at 

least one of these items is not smaller than 5.4
34

153
. As 

all the items ir  and ik  are natural numbers, then the 

corresponding line or column is the wanted one. The 

problem is solved.   
 
 

63
k
. example. After the election of the parliament 

the deputies formed 12 factions (each deputy 

became member of exactly 1 faction). After the first 

plenary meeting the deputies’ opinions changed, 

and they united in 16 new factions (still each 

deputy was member of exactly 1 faction). Prove 

that now at least 5 deputies are in smaller factions 

than immediately after the election of the 

parliament. 

Solution. If the deputy is member of the faction with 

x members altogether, we can say his importance is 
x

1
 . 

Let us presume that the importance of the deputies in the 

first distribution were N21 a,,a,a  , but in the second - 

N21 b,,b,b  . We must prove that for at least 5 

different indexes i the inequality ii ab  holds. It is clear 

that the sum of all importances in each faction is 1; 

therefore, in the first distribution the sum of importances 

of all the parliamentary deputies is 12, but in the second 

it is 16. The importance of each deputy in each 

distribution is a positive number not exceeding 1; 

therefore the importance of each deputy, when the 
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distribution changes, is altering by the magnitude which 

is smaller than 1. If the importances of only 4 deputies 

have increased, then the sum of importances has 

increased by less than 4; so, it cannot increase from 12 to 

16. Consequently the importances of at least 5 deputies 

have increased. The problem is solved.  
 
 

Sometimes, applying a similar method, the product is 

discussed instead of the sum. 

64
k
. example. It is given that 0 < a < 1, 0 < b < 1, 

0 < c < 1. Prove that at least one of the numbers 

b1a , c1b , a1c  does not exceed 
4

1
. 

Commentary. The previous method of solution is not 

useful: we cannot prove that the sum of all numbers 

does not exceed 
4

3
, because, for example, if 

a = 0.98; b = c =0.01, then already the first item 

alone exceeds 
4

3
. We must look for another way. 

Solution. The product of all 3 investigated numbers 

c1cb1ba1aa1cc1bb1aR . 

It is easy to understand that for each x there exists an 

inequality 
4

1
x

2

1

4

1
xxx1x

2
2 . Therefore 

4

1

4

1

4

1
R . Now it is clear that simultaneously there 

cannot be 
4

1
b1a , 

4

1
c1b ; if it were like that, 

then it would be 
4

1

4

1

4

1
R . The problem is solved.  
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Problems for Independent Solution. 

99
o
. Prove that among 100 different natural numbers it is 

possible to find 3, whose sum exceeds 296. 

100
o
. 15 boys have 100 mathematics books altogether. 

Prove: there are 2 boys who have the same number of 

books. 

101
o
. Solve example 59, if instead of the table 5 x 5 we 

are discussing the table of n x n squares. 

102. 7 girls have 110 dolls altogether. Prove that it is 

possible to find 4 girls who have at least 70 dolls 

altogether. It is known that all the girls have different 

number of dolls. 

103
o
 Given is that a, b, c are real numbers. Prove that at 

least one of the equations 0cbx2ax 2
; 

0acx2bx 2
, 0bax2cx2

 has a real root. 

104. The table consists of 10 x 10 squares. Natural 

numbers from 1 to 10 are written in them (1 number in 

each square). Prove that there exist 

a)
o
 2 squares with a common side and the difference 

of numbers written in them at least 6, 

b) 2 squares with a common side or a common 

corner and the difference of numbers written in them 

at least 11, 

c)
k
 2 squares with a common side, where the 

difference of numbers written in them is at least 10. 

105. The table consists of 10 x 10 squares. A natural 

number is written in each of them. The numbers written 

in every 2 squares with a common side do not differ more 

than by 1. 
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a)
o
 Prove that there is a number which is written in 

at least 6 squares. 

b)
k
 Prove that there is a number which is written in 

at least 10 squares. 

106. A regular triangle ABC is divided into 25 small 

regular triangles as shown in Fig. 38. In each of the small 

triangles there is written a natural number from 1 to 25 

(different numbers in different triangles). Prove that it is 

possible to find 2 triangles with a common side where the 

written numbers differ: 

a) at least by 3, 

b)
*
 at least by 4.. 

 

Fig. 38  
107

*
. Given is 21 natural number; they all are different, 

and none of them exceeds 71. Prove that among the 

differences of these numbers it is possible to choose 4 

differences, all of which are equal to one another. 

108. Given are 20 natural numbers; they all are different, 

and all are smaller than 70. Prove that out of differences 

of these numbers it is possible to choose 4 that all are 

equal among themselves. 

109
o
. At the boxing contest the boxers are divided into 12 

groups of weight and they represent 6 teams. Prove: it is 

possible to find at least 7 such boxers who have more 

team-mates in this championship than contestants in their 

class of weight. 
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110
k
. 512 wrestlers participate in a tournament. First they 

divide themselves into pairs and wrestle with each other; 

256 winners wrestle in pairs again, 128 winners of these 

pairs wrestle again etc. (The system arranging such 

tournaments is called Olympic). In final there wrestle 

representatives of both previous pairs - winners of the 

semi-final. Before the beginning of the tournament each 

wrestler was given a qualification number from 1 to 512 

(a different number to each sportsman); this number does 

not alter during the tournament. The contest is called 

interesting if the wrestlers, whose numbers do not differ 

by more than 30, participate in it. Prove that in the 

tournament there is at least 1 uninteresting contest. 

111. Given is that a, b, c, d, e, f, g, h, i are some numbers. 

Can all the numbers aei, bfg, dhc, -ceg, -bdi, -afh be 

positive simultaneously? 

112. Is the following pre-election promise of some party 

(let us keep silent - which one) decent: 

“Our party proposes to achieve the objective that any 

working person gets more than the average monthly 

salary”? 
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VIII. DIRICHLET PRINCIPLE IN 

GEOMETRY 

In this chapter we shall discuss the problems where 

Dirichlet principle or the method discussed in the 

previous chapter are used in solving the problems of 

geometry. In all examples the applications of Dirichlet 

principle or estimations of sums are used together with 

some geometrical idea or fact; we shall try to indicate it 

clearly in any case. 

VIII.1. MAXIMAL DISTANCE BETWEEN 

THE POINTS OF A POLYGON 

65. example. In a 3 x 4 rectangle 7 points are 

placed (inside or on a contour). Prove that at least 

2 of them are located no farther than 5  from 

each other. 

Solution. Let us look at Fig. 39. 

     

    

    

 Fig. 39  

In at least one of 6 rectangles there are 2 or more of 

the discussed points (Dirichlet principle!). As the ends of 

the diagonal are the farthest points in the rectangle 

(geometrical idea) and the length of the diagonal is 5  
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(Pythagorean theorem), then both these points are the 

wanted ones.  
 
 

66
*
. example. In a 3 x 4 rectangle 6 points are 

placed (inside or on a contour). Prove that at least 

2 of them are located no farther than 5  from 

each other. 

Commentary. It is not possible to use the division of 

the rectangle into 6 “hutches” as shown in Fig. 39 - 

perhaps only 1 point gets into each “hutch”. 

Solution. Let us see Fig. 40 where the rectangle is 

divided into 5 parts. You can find at least 2 points in one 

part. As within each part the distance between the points 

does not exceed 5 (check yourself that no side and no 

diagonal is longer than 5 ), then we can take both these 

points as wanted ones.  
 

 

     
    

    

 Fig. 40  

Commentary. The following intuitively evident fact 

was used without proof in the solution of both 

previous examples: the longest distance between 

the points of a polygon is the distance between 

some two of its vertexes. We advise the reader to 

try to prove it independently. 

67
k
. example. A regular triangle T with the length 

of the side 1 is completely overlapped with 5 

identical patterns; each pattern has the form of a 

regular triangle (the length of its side is not known). 

Probably the patterns overlap each other partially. 



39

Prove that it is possible to overlap the regular 

triangle T with 4 patterns of the same size. 

Solution. Let us discuss the midpoints of the sides 

and the vertices of triangle T (Fig. 41
a
). Every two of 

these 6 points are at the distance 
2

1
 from each other. As 

they are covered by 5 patterns, then at least 2 points are 

covered by 1 pattern. The maximum distance between the 

points of a regular triangle (pattern) is the length of its 

side; we conclude that the length of the pattern’s side is 

at least 
2

1
 because it overlaps 2 points of the 6 mentioned 

above. 

Triangle T (Fig. 41
b
) is divided into 4 regular 

triangles, and each of them can be covered by a pattern 

whose side is 
2

1
 long.  

 
 

 

Fig. 41 

a) 

T 

b) 

 

VIII.2. THE APPLICATION OF 

PARTICULAR, SPECIALLY FORMED SYSTEM 

OF POINTS 

The essence of the method is well enough in the 

heading of this chapter. We shall discuss it within 

examples. 
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68. example. Each point of the plane is painted 

white, black or red (the painting is entirely 

arbitrary). Prove that it is possible to find 2 points 

which are painted in the same colour and they are 

at the distance of 1m from each other. 

Solution. We are discussing an equilateral triangle 

whose side is 1m long. It has 3 apexes; among them there 

are 2 painted in the same colour (Dirichlet principle D1). 

These apexes are good as the wanted points.  
 
 

69
*
. example. Each point of the plane is painted 

white, black or red (the painting is entirely 

arbitrary). Prove that it is possible to find 2 points 

which are painted in the same colour and the 

distance between them is 1m. 

Solution. Let us look at Fig. 42; every 2 points 

connected by a segment are at the distance of 1m from 

another. You can form such system in the following way 

(see Fig. 43): at first we make 2 rhombi ABCG and 

AFDE, and each of them consists of 2 equilateral 

triangles whose each side is 1m long. After that we are 

turning them towards each other round point A as long as 

CD becomes 1m long, too. Now we are analyzing the 

system of 7 points shown in Fig. 42. 

 

Fig. 42 

G 
F 

E 

D 

C 

B 

A 

 

 

Fig. 43 

F 

E 

D 

C 

B 

A 

G 
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Let us presume that these 7 points are painted so, 

that among them there are not 2 points at the distance of 

1m from one another. As 3 colours are used and 237 , 

then among these 7 points 3 will turn up painted in the 

same colour. If one of them is B, F, G or E, then the other 

two must be apexes of 1 equilateral triangle with a 1m 

long side (for example, if one point is B, then the other 

two must be EFD apexes); then among them there are 

two at the distance of 1m in accordance with example 68. 

If none of them is B, F, G or E, then they are A, C, D; but 

CD = 1m. We get a contradiction in all cases. The 

problem is solved.  
 
 

In the solving of the next example we shall use the 

property of vertexes of a regular pentagon: every three 

vertexes of a regular pentagon form an isosceles triangle. 

Actually this property exists even if the centre of the 

pentagon is added to the 5 vertexes (see Fig. 44). 

Motivate it independently (it is easy to do it). 

70. example. 9 vertexes of a regular 20-gon are 

painted black. Prove that it is possible to find an 

isosceles triangle whose all vertexes are black. 

Solution. Let us number the vertexes in turn with 1; 

2; 3; …; 19; 20 and divide them into 4 groups 

;17,13,9,5,1  ;18,14,10,6,2  ;19,15,11,7,3  

20,16,12,8,4 . It is not difficult to verify that the 

vertexes of each group form a regular pentagon. 

As 249 , then 3 black points will turn up that 

belong to the same group. In accordance with the above 

mentioned property of the regular pentagon they may be 

accepted as the wanted.  
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Fig. 44  

VIII.3. THE PROPERTY OF VERTEXES 

AND SEGMENTS OF A BROKEN LINE 

Let us make use of the following properties (here 

they follow from the definition of a broken line): no 3 

vertexes of a broken line, taken in succession, are 

situated on one straight line; no two segments of a broken 

line, taken in succession, are situated on one straight line. 

71. example. What biggest number of vertexes of a 

12-gon can be situated on one straight line? 

Solution. We already saw (see Part 1, p. 56) that 8 

vertexes can be situated on one straight line. Let us show 

that 9 vertexes cannot be situated on one straight line. We 

shall divide into 4 groups the vertexes of a 12-gon, which 

are numbered in succession with numbers from 1 to 12: 

321   654   987   121110  

Let us presume that 9 vertexes are situated on one 

straight line. As 249  then some 3 of these 9 vertexes 

belong to one group. But in that case three vertexes in 

succession would be on one straight line - a contradiction. 

So, our presumption is wrong.  
 
 

72. example. 36 points are placed in a square - 

like grid (see Fig. 45). What is the smallest number 

of segments for a closed broken line that goes 
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through all the points? All the segments must be 

horizontal or vertical. 

      

     

     

     

     

 Fig. 45   

      

     

     

     

     

 Fig. 46 
 

Solution. The line shown in Fig. 46 has 12 segments. 

Let us show that a smaller number of segments is not 

enough. As in a closed broken line vertical and horizontal 

segments change by turns, so the number of segments is 

an even number. 

Let us presume that in this line there are less than 12 

links. Then there are no more than 5 horizontal and no 

more than 5 vertical links. As there are 6 horizontals in 

the grid, then there is such a horizontal H which has not a 

single horizontal link; as there are 6 verticals in the grid, 

then there is such a vertical V which has not a single 

vertical link. Our broken line does not lead through the 

point where H and V intersect. It is a contradiction. So it 

needs at least 12 links. 

73. example. 6 straight lines are intersecting. 

What is the biggest possible number of sides of the 

polygon whose all sides are situated on these lines? 

Solution. Each straight line can intersect no 

more than 5 others, so no more than 5 points of 

intersection arise on it. They divide the straight line in no 

more than 6 parts. Two of them are rays. So, on each 

straight line there arise no more than 4 segments without 
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common inner points. It is easy to understand that from 

these segments no more than 2 sides of a polygon can 

form, because two sides situated on one straight line 

cannot have common points. So ,on each straight line 

there are no more than 2 sides of a polygon, therefore the 

total number of the sides does not exceed 1226 . 

Fig. 47 shows that it is possible for such a polygon to 

have 12 sides. Consequently, the answer of the problem 

is 12.  
 
 

 

Fig. 47  

VIII.4. ESTIMATION METHODS OF SUMS 

The solutions of the problems of this chapter 

essentially use the following analogues of Dirichlet 

principle (we shall call them the theorems D4 and D5). 

Theorem D4 

If the sum of n items exceeds S, then at least one 

of the items exceeds 
n

S
; if the sum of n items is not 
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smaller than S, then at least one of the items is not 

smaller than 
n

S
. 

Theorem D5 

If the sum of n items is smaller than S, then at 

least one of the items is smaller than 
n

S
; if the sum 

of n items does not exceed S, then at least one of the 

items does not exceed 
n

S
. 

Let us show, for example, how the first part of D4 is 

proved. 

Let us presume the contrary - none of n items 

exceeds 
n

S
. In this case the sum of these n items does not 

exceed 
n

S

n

S

n

S
  (n times) or it does not exceed S. 

It is a contradiction to what is given in the terms of the 

theorem. So, our presumption is wrong, and there must 

be the item exceeding 
n

S
. The reader himself can prove 

also the other theorems from the contrary with the help of 

addition of inequalities (it is very easy). 

In specific problems S and the corresponding items 

can be of most different character: areas, lengths, 

distances, magnitudes of angles, angular magnitudes of 

arcs etc. With the help of theorems D4 and D5 we shall 

try to draw some conclusions about the area, length, 

angular magnitude etc. of a particular figure, using the 
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information about the sum of several areas, lengths, 

angles etc. 

VIII.4.1. DIRECT ESTIMATIONS OF SUMS 

First, we shall discuss the problems connected with 

the conception of area. Here the following property is 

important: if the figure is divided into several parts then 

the area of the figure is equal to the sum of areas of 

separate parts. 

74. example. A square of dimensions 6 x 6 cells is 

cut into 9 rectangles: the cuts run only along the 

lines of the cells. 

Prove that there are 2 equal rectangles among the 

9 cut ones. 

Solution. Let us presume that all the rectangles 

obtained by cutting are different. The table below shows 

rectangles with the smallest possible areas (the unity of 

measure of the area is 1 cell). 

 Area 1 2 3 4 5 6 7 

1 x 4 1 x 6 
Dimensions 1 x 1 1 x 2 1 x 3 

2 x 2 
1 x 5 

2 x 3 
1 x 7 

  

It is evident: even if we choose 9 different rectangles 

with the smallest possible areas, the sum of their areas is 

3638766544321 . So it is not 

possible simultaneously to obtain 9 different rectangles 

from the given square. Therefore 2 rectangles obtained 

by cutting will be equal.  
 
 

75. example. The length of the side of a square is 1. 

There are 19 points marked inside the square. 

These points and the vertices of the square are 
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coloured red. No 3 of red points are on the same 

line. 

Prove that there is a triangle with area not 

exceeding 
40

1
 all of whose vertices are red. 

Solution. Let us show that it is possible to divide the 

square into 40 triangles with red apexes without common 

inner points. As the sum of their areas is 1, then at least 1 

area does not exceed 
40

1
. 

We shall begin to draw the segments connecting 2 

red points. We draw each following segment so that it 

does not intersect any of the previously drawn. We are 

continuing this process so long that it is no more possible 

to draw any segment. At this moment the whole square is 

divided into triangles (if there was some part with a 

bigger number of sides - a quadrangle, pentagon etc. - 

then, by drawing one of its diagonals, it would be 

possible to continue to draw the segments). Besides, the 

full angle around every inner red point has divided into 

the angles of triangles (if it were not so, then it would be 

still possible to draw segments from this point). The sum 

of all angles of all the triangles consists of 19 full angles 

around the inner points and 4 right angles of the square. 

Therefore, their sum is 
ooo 3602036036019 . As 

the sum of the angles of 1 triangle is 
o180 ; then there are 

40
180

36020
o

o

 triangles -this is what we had to prove.  
 
 

Now we shall discuss the problems connected with 

the conception of the magnitude of the angle. Here it is 

important to know 3 facts: 
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a) the sum of internal angles of the n-gon is 

2n180o , 

b) the sum of external angles of a convex n-gon 

(taking one external angle at each apex) is 
o360 , 

c) if we divide the angle into several angles with 

rays leading out of the apex, then the sum of 

magnitudes of the separate parts is identical with the 

magnitude of the whole initial angle. 

76. example. What biggest number of acute angles 

can be in a 12-gon? 

Solution. As you see in Fig. 48, 9 acute angles are 

possible. We shall motivate why more such angles are 

not possible. Let us presume that 10 angles of the 12-gon 

are acute. Then the sum of magnitudes of these 10 angles 

is smaller than 
oo 9009010 . Each of the other 2 

angles is smaller than 
o360 ; therefore the sum of 

magnitudes of all the angles is smaller than 
ooo 16203602900 . But the sum of the angles of a 

12-gon is oo 1800212180 . We get a contradiction, 

so our presumption is wrong, and there cannot be 10 

acute angles.  
 
 

 

Fig. 48   

 

A 
C 

B 

Fig. 49  



49

77. example. What biggest number of acute angles 

can be in a convex 12-gon? 

Solution. As can be seen in Fig. 49, it can be 3 (the 

acute angles are marked by small bows, but the nodes of 

the obtuse angles are situated on the arc of the circle 

between B and C). If a convex 12-gon had 4 acute angles 

then all their external angles would be obtuse (i.e. they 

would exceed 
o90 ), and the sum of magnitudes of obtuse 

angles would exceed 
o360  - a contradiction. So, the 

presumption is wrong and there cannot be 4 acute 

angles.  
 
 

78. example. In an 11-gon no two diagonals are 

parallel. Prove: among the straight lines holding 

the diagonals of this 11-gon it is possible to find 

such 2 which form an angle smaller than 
o5 . 

Solution. You can draw 8 diagonals from each 

vertex of the 11-gon. So, in total there are 11  8 = 88 

ends of diagonals; there are 442/88  diagonals. We 

draw 44 straight lines through some point O, and each of 

them is parallel to another diagonal. The full angle round 

the point O divides into 88 angles, which are alternate 

angles in pairs. If none of them were smaller than 
o5 , 

then their sum would not be smaller than 
oo 440588 . 

However, this sum is 
o360 . So, one of the angles formed 

in point O is smaller than 
o5 ; the same kind of angle is 

between the straight lines holding the respective 

diagonals.  
 
 

79. example. On the straight line t there are 6 

segments without common points. Each of them 

serves as the base where an equilateral triangle is 
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constructed /designed/ (all on one side of the 

straight line t). We construct 6 circles whose 

centres are those apexes of these triangles which 

do not belong to the straight line t, but the radiuses 

are identical with the lengths of the sides of the 

respective triangles. Prove that there is not a point 

that belongs to all these circles simultaneously. 

Solution. Let us presume that P may be such a point 

and ABC - one of the 6 triangles discussed (Fig. 50). 

 

60
o 

A 

Fig. 50 

B n 

P 
C 

 

As arc AnB corresponds to the angle ACB of the 

centre whose magnitude is 
o60 , then 

 o60AnB  . As 

APB  is inscribed (if P belongs to the circumference) or 

internal (if P is inside the circumference) angle that rests 

on arc AnB, then  AnB5.0APB  , resp. 

 AnB5.0APB  . In any case 
o30APB . 

If point B belonged to all the 6 circles, then there 

would be o
6

o
2

o
1 30,,30,30   (see Fig. 51). 

But it cannot be like that because apparently 
o

621 180MPN . We get a 

contradiction, so P cannot belong to all 6 circles to be 

discussed.  
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Fig. 51 

6 

N P M 

4 3 2 1 5 

 

Commentary. In order you did not imagine that the 

circles constructed in the way discussed, can 

generally split only by twos, or, at most, by threes, 

we advise you to make the drawing independently, 

where analogically constructed 5 circles have a 

common point (it can be done). 

The object of summarizing may be the angular 

magnitudes of the arcs, too. 

80. example. A square and a regular triangle are 

inscribed in the same circumference. Their vertexes 

divide the circumference into 7 arcs. Prove that at 

least the size of one arc does not exceed 
o15 . 

The first observation. If 7 arcs arise, then no 

square vertex coincides with any apex of the 

triangle. 

Commentary. If we just observed that the sum of 

angular magnitudes of 7 arcs is 
o360  and if at once 

we tried to estimate the smaller item only on the 

basis of this information, we would draw a 

conclusion that it is possible to find an arc that does 

not exceed o
o

42.51
7

360
 But we need a more 

powerful result. 
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Solution. First we shall discuss 3 arcs into which the 

triangle apexes divide the circumference; 4 vertexes of 

the square are placed along them. So, 2 of them belong to 

the same 
o120  arc (Dirichlet principle D1!). Let us 

presume that they are M and N (see Fig. 52) which are on 

the arc marked off by triangle apexes A and B. We 

observe that 
 o120AB   and 

 o90MN  , therefore 
 o30NBAM  

. From the equality 
 o30NBAM   it follows that either 

 o15AM    or 
 o15NB   which we had to prove. 

 

N M 

B A Fig. 52  

VIII.4.2. SUM ESTIMATIONS AND 

OVERLAPPING 

It is easy to understand that the following statements 

are correct. 

Theorem about overlapping on the 

straight line. 

Let us presume that given is a segment with 

length t. If in it there are located several segments 

whose sum of lengths exceeds t, then some segments 

overlap one another somewhere. Let us presume that 

given is a segment with length t. If we locate in it 

several segments whose sum of lengths exceeds k  t 

(k is a natural number), then there exists a point 
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which is covered by at least k + 1 of the located 

segments. 

Theorem about overlapping in the 

plane. 

Let us presume that given is a room with area S. 

If we put several not-folded up carpets into it, whose 

sum of areas exceeds S, then some carpets overlap 

somewhere. Let us presume that given is a room with 

the area S. If we put into it several not-folded up 

carpets, whose sum of areas exceeds k  S (k is a 

natural number), then there exists a point which is 

covered by at least k + 1 carpet. 

The above mentioned theorems are geometric 

versions of D4 and D5 theorems mentioned at the 

beginning. We advise you to prove them independently, 

as well as formulate and prove similar statements about 

what happens if the sum of longitudes of the located 

segments is smaller then t, i.e., smaller then k  t, or if the 

sum of areas of located carpets is smaller than S, i.e., 

smaller than k  S. 

81. example. In the square ABCD where the length 

of the side is 1, several circumferences are situated 

whose sum of lengths is 20. Prove that it is possible 

to draw a straight line that is perpendicular to AB 

and intersects at least 7 of these circumferences. 

Solution. We shall project all the circumferences on 

the side AB (see Fig. 53). Each circumference projects in 

a segment whose length is equal to its diameter. If the 

diameters of the circumferences are n21 d,,d,d  , then 

the sum of their lengths is 20ddd n21  . 
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Consequently, 6/20ddd n21  . Therefore 

in the segment AB, whose length is 1, n segments are 

located whose sum of longitudes exceeds 6. Therefore at 

least some point of AB is covered by no less than 7 

segments (if every point of AB were covered by no more 

than 6 segments, then their common length could not 

exceed the six fold length of AB - a contradiction). 

Drawing through this point Q a straight line 

perpendicularly to AB it intersects all those (at least 

seven!) circumferences, whose projections cover the 

point Q. The problem is solved.  
 
 

 

Fig. 53 

D C 

B A 

 

82
*
. example. In the circle with the radius 10 there 

are 122 points (inside or on the margin). Prove that 

among them it is possible to find 2, which are on 

the distance smaller than 2 from each other. 

Solution. Let us draw a small circle with radius 1 

around each point. All such small circles are located 

inside the broken circumference (with radius 11) or they 

contact it inwardly (see Fig. 54). 
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Fig. 54   

 

Fig. 55 

B 

M 

A 

 

The broken circumference bounds the circle with the 

area 121112
; the area of each small circle is 

21 . As the sum of small circles’ areas exceeds the 

area of the “broken” circle, then some 2 small circles 

overlap each other. But then the distance between their 

centres is smaller than 2 (see Fig. 55): 

211MBAMAB , consequently AB < 2 what 

we had to prove. The problem is solved.  
 
 

We can use similar arguments in all problems where 

the demand is to locate the figures so that no 2 figures are 

nearer each other than at a distance d. Then we extend 

each figure by a 
2

d
 wide “edging”; the extended figures 

must not overlap one another. 

VIII.4.3. SUM ESTIMATIONS AND THE 

TRIANGLE INEQUALITY 

Alongside with the triangle inequality (in each 

triangle ABC the inequalities AB + BC > AC, 

AC + CB > AB, BA + AC > BC hold) it is suitable to use 

the following facts (they both follow from the triangle 

inequality) in solution of the problems of this group. 
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Quadrangle inequality. 

In the convex quadrangle ABCD the inequalities 

AC + BD > AB + CD and AC + BD > AD + BC hold 

(the sum of diagonals’ lengths exceeds the sum of 

the lengths of 2 opposite sides). 

Proof. If the diagonals intersect in point O, then 

(see Fig. 56) AO + OB > AB and OC + DO > CD.  

Adding up these inequalities we get 

CDABOBDOOCAO  or CDABBDAC . 

The second inequality is proved in the same way.  

 

O 

D 

C 
B 

A 
Fig. 56  

 

M 

D 

C 

B 

A 

Fig. 57  

Theorem about the length of the 

median. 

The median of triangle is shorter than half the 

sum of those sides between which it is situated. 

Proof. We extend ABC up to the parallelogram 

ABCD. The point of intersection of its diagonals is 

marked M (Fig. 57). Then M is the midpoint of AC and 

BD. So BM is the median of ABC. From the triangle 

inequality, applying it to ABD, we get AB + AD > BD. 

But AD = BC and BD = 2  BM, therefore from this 

inequality follows AB + BC > 2  BM or 

BCAB
2

1
BM  what we had to prove.  



57

83. example. Prove that in a convex quadrangle at 

least one diagonal is longer than one-fourth of the 

perimeter. 

Solution. In accordance with the quadrangle 

inequality, in a convex quadrangle ABCD there we have 

CDABBDAC , BCADBDAC  

(see Fig. 56). 

Adding up these inequalities, we get 

ABCDPerBDAC2  or ABCDPer
2

1
BDAC . (*) 

From here it follows that either AC or BD exceeds 

ABCDPer
4

1
; if it were both ABCDPer

4

1
AC  and 

ABCDPer
4

1
BD  then, by adding up both the last 

inequalities, we would get ABCDPer
2

1
BDAC  that 

contradicts (*).  
 
 

84. example. The length of the diagonal of the 

square ABCD is d. Inside it a point M is taken. 

Prove that the distance of M to at least 2 vertexes is 

not smaller than 
2

d
. 

Solution. In accordance with the triangle inequality, 

for each point M we have dCMAM  (equality is 

possible only if M is on AC). If the sum of 2 items is not 

smaller than d, then at least one of them is not smaller 
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than 
2

d
. The same way it is proved, that the distance of 

M either to B or D is not smaller than 
2

d
.  

 
 

85
*
. example. On the table there are 100 exactly 

functioning clocks. Prove: no matter what the point 

P of the table may be, a moment will turn up, when 

the sum of distances from P to the centres of faces 

of the clocks will be smaller than the sum of 

distances from P to the ends of the minute hands. 

Solution. We will choose such a moment when none 

of the straight lines, where the minute hands are situated, 

leads through P. We shall mark the positions of the ends 

of minute hands at this moment by 10021 A,,A,A  , but 

their positions half-an-hour later by 10021 B,,B,B  . 

The choice of the moment guarantees that point P forms 

a triangle with each pairs of points 11 B,A , 22 B,A  

etc. (see Fig. 58). We shall mark the corresponding 

centres of faces by 10021 O,,O,O  . 

 P 

Oi Ai Bi 

Fig. 58  

Then PO1 is a median in the triangle PA1B1, PO2 is a 

median in the triangle PA2B2 etc. In accordance with the 

theorem about the length of median we get 
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.PO2PBPA

PO2PBPA

PO2PBPA

100100100

222

111


 

By adding up these inequalities and grouping the 

members we get 

1002110021 PBPBPBPAPAPA   

10021 POPOPO2  . 

From here it follows that either 

1002110021 POPOPOPAPAPA  , 

or 

1002110021 POPOPOPBPBPB  . 

Consequently, either the moment chosen at the 

beginning or the moment following after half-an-hour is 

useful.  
 
 

VIII.5. SOME PECULIAR METHODS OF 

“HUTCH” CONSTRUCTION 

Certainly, here it is not possible to comprise all the 

methods formed till now; besides, we must realize that 

there are many more peculiar “inventions” to be 

discovered. We shall show some striking examples. 

86
*
. example. A regular 12-gon has 6 vertexes 

painted white, but the other 6 - black. Prove that it 

is possible to find 2 identical quadrangles: one of 

them has only white vertexes, but the other - only 

black vertexes. 
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Solution. We shall discuss two copies of this 12-gon 

which are placed exactly one above the other. The lower 

12-gon is not altered. We shall discuss all the 12 possible 

positions the upper 12-gon may have if it is turned by 
o30  12 times in succession (the vertexes of both 12-gons 

coincide in pairs in each of these 12 positions). In all the 

12 positions together, at times every vertex of the upper 

12-gon coincides with every vertex of the lower 12-gon. 

As there are 6 white vertexes in the upper 12-gon 

and 6 black in the lower, then the coincidence of the 

white upper vertex with the black lower vertex happens 

6 x 6 = 36 times. In one position - after the 12
th

 turn - 

there is no such coincidence, because the upper 12-gon 

has returned to the initial position and the white vertexes 

coincide with the white, but the black - with the black 

ones. So, the above mentioned coincidences are 

distributed among 11 positions of the upper polygon. As 

36 > 11  3, then in one of the positions at least 4 upper 

white vertexes coincide with the lower black ones. These 

coincidences determine both the necessary quadrangles.  
 
 

87
k
. example. Given are 13 different rectangles. 

The lengths of their sides are expressed by whole 

numbers. None of the sides is shorter than 1 and 

none is longer than 12. Prove that among them it is 

possible to choose such 3 rectangles, that the first 

one can be completely overlapped by the second, 

and the second one - by the third rectangle. (By 

overlapping, the rectangles must be placed so that 

their sides are parallel). 

Solution. Let us look at the table of Fig. 59. 
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 Fig. 59 

12 11 10 9 8 7 6 5 4 3 2 1 

12 
11 

10 
9 
8 
7 
6 
5 
4 
3 
2 
1 

 

Depending on its parameters, it is possible to put 

each rectangle exactly into one of the white squares. We 

can see the distribution of these squares into 6 “hutches”. 

As 13 > 6  2, a “hutch” may be found where at least 

3 rectangles are placed. 

It is not difficult to understand: if in 1 “hutch” 3 

rectangles follow one after the other (first comes A, then 

B and then C), then it is possible to overlap rectangle A 

by rectangle B, but B - by C. The problem is solved.   
 
 

88. example. A square consisting of 6 x 6 cells is 

made up of 18 rectangles 1 x 2 cells each (we shall 

call these 1 x 2 cell rectangles dominos). Prove that 

it is possible to divide this square into 2 rectangles 

without cutting any domino. 

Solution. Let us presume that it is not possible to do 

it. Then each of the 10 straight lines shown by Fig. 60 

intersects at least 1 domino (otherwise we could divide 

the square along this straight line). 



62

 

      
      
      
      
      
      
 Fig. 60  

  

 
 
 

Fig. 61 

n 

t 

 

We shall apply Dirichlet principle in quite unusual 

way. Let us prove: it is impossible that all straight lines 

intersect more than 1 domino simultaneously. Really, 

if each of 10 straight lines intersected at least 2 dominos, 

then there would be at least 10  2 = 20 dominos in total 

(it is clear that only 1 straight line can intersect each 

domino); but there are only 18
2

36
 dominos. We 

conclude that among the described straight lines there is 

one that intersects exactly 1 domino. We shall presume 

that it is the straight line t (Fig. 61). It is not possible. 

Really, in the part of the square above the straight line t 

there are 6  n, i.e., an even number of squares. These 6n 

squares consist of a whole number of uncut dominos and 

1 black square in the upper part that comes from the only 

cut domino. Consequently, the number of squares in the 

upper part is “the even quantity + 1”, i.e., an odd number. 

We get a contradiction. The problem is solved.  
 
 

89. example. 36 points are located like a quadratic 

grid (see Fig. 62). What smallest number of 

straight lines must be drawn, so that they divided 

the plane into such regions, that each of them 

contained no more than one point (or, what 

smallest number of straight lines is enough to 

separate all the points from each other)? 
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 Fig. 62  

Apparent observation: it is enough to draw 5 

vertical straight lines (one between every two 

columns of points drawn next to each other) and 5 

horizontal straight lines; 10 altogether. Lasting 

attempts do not bring a better result (a smaller 

number of straight lines). 

The attempt of the optimality proof. 

A natural idea is to try to prove, that, by drawing 9 

straight lines, definitely there appear less than 36 regions. 

If it were the case, then, according to Dirichlet principle, 

in the situation of 9 straight lines there would be more 

than 1 point in some region. Unfortunately, it turns out 

that the number of regions can reach and even exceed 36. 

As seen in Fig. 63, 3 straight lines can divide the 

plane into 7 regions. If we draw the fourth straight line so 

that it intersects all 3 preceding ones in different points, 

on the fourth straight line there appear 3 points of 

intersection. Therefore it splits into 4 parts (2 rays and 2 

segments). Each of these 4 parts divides one of the old 

regions into 2 parts, so the number of regions increases 

by 4. We can show similarly that drawing the fifth line 

can increase the number of regions by 5, drawing the 

sixth line - by 6 etc. So, 9 straight lines can divide the 

plane into 469876547  regions, which 
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would be as if more than enough for locating 36 points 

one by one. 

 

5 4 3 

2 

1 

6 
7 

Fig. 63   

      

     

     

     

     

 Fig. 64  

So we must look for another way of solution. 

Proof of the optimality. We shall discuss 

only the external of the given 36 points (see Fig. 64); 

they all, too, must be separated one from the other. It is 

possible to separate 2 alongside points only by 

intersecting the segment that connects them. 

There are 20 segments altogether and each straight 

line can intersect no more than 2 of them. Consequently, 

the number of the straight lines must be at least 10
2

20
. 

The problem is solved.  
 
 

Commentaries. 

1. We have the same situation as in the solution of 

the example 13 - it seems that it is possible to 

separate easier only the external points than all of 

them. However, exactly the analysis of this “easier” 

case allows us to solve simultaneously the general 

problem, which did not come easy before. 

2. Like in the solution of example 66, we see: if the 

proof does come not easy when we use “hutches” 

and “rabbits” of one kind (parts of the plane and 

points), it may come easy if we choose other 
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“hutches” and “rabbits” (in this case “hutches” are 

the drawn straight lines, but “rabbits” - segments to 

be intersected; if we draw only 9 straight lines, then 

one of them should intersect 3 segments, which is 

not possible). 

3. The idea to discuss the “external” points is not 

as accidental as it may seem. Many people admit 

that, for example, the nature of a man shows itself 

in extreme situations. Like in mathematics, it is 

quite often that you succeed if you discuss the 

“extreme”, “the most outstanding” elements from 

some point of view - the biggest among the 

numbers discussed, the most distant of the points 

discussed, the triangle with the smallest area among 

the discussed ones etc. This kind of reasoning has 

its own title - “the method of extremal element”. 

We may say that we already applied the method of 

extremal element in the solution of example 27: the 

smallest prime multiplier of each number was 

discussed. 

We could say that, in a hidden way, the application 

of Dirichlet principle is almost always connected 

with seeking of the extremal element: really, 

usually it is possible to choose as wanted “hutch” 

the one, which contains the most of “rabbits” (or 

the least - depending on the kind of Dirichlet 

principle applied). 

Problems for Independent Solution. 

113. The length of the side of an equilateral triangle is 2. 

Five points are marked in the triangle. Prove that some 2 

of them are situated at the distance not exceeding 1 from 

each other. 
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114. The length of the side of an equilateral triangle is 10. 

There are marked 201 points in it. Prove that it is 

possible to find such 3 points among them, all of which 

are at the distance not exceeding 1 from one another. 

115. The dimensions of a square are 8 x 8; four points are 

marked in it. Prove that it is possible to find such 2 

marked points which are at the distance not exceeding 

65  from each other. 

116. Each contour point of a regular triangle is coloured 

white or black. Prove that it is possible to find a right-

angled triangle that has all the apexes painted in the same 

colour. 

117
*
. Each point of a plane is painted black or white. Can 

you definitely find an equilateral triangle that has all its 

apexes painted in the same colour and the length of its 

side 1m? 

118. A regular triangle is divided into 16 smaller equal 

triangles (Fig. 65). Every apex of the triangles of the grid 

is painted white or black. Prove that it is possible to find 

an equilateral triangle whose all apexes are painted in the 

same colour. 

 

Fig. 65  
119

o
. Out of 40 vertexes of a 40-gon 17 are painted red. 

Prove: it is possible to find an isosceles triangle with all 

apexes painted red. 

120
o
. 10 x 10 points are placed in the shape of quadratic 

grid. What is the smallest number of segments for a 
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broken line (not obligatory closed) that goes through all 

the points? 

All segments are either horizontal or vertical. 

121
k
. Solve example 71 if you withdraw the demand, that 

all the segments be horizontal or vertical. 

122
o
. 5 straight lines intersect mutually. What is the 

biggest possible number of sides of a polygon, whose all 

sides are situated on these straight lines? 

123. Can a 1000-gon have 501 parallel sides? 

124
o
. A square consists of 8 x 8 cells. It is cut into 13 

rectangles. The cuts run only along the border lines of the 

cells. 

Prove that there are 2 identical rectangles among those 

formed by cutting. 

125
o
. Inside the triangle there are 10 red and 20 blue 

points; also the apexes are red. No 3 coloured points are 

situated on one line. Prove: it is possible to find a triangle, 

whose all apexes are red and which does not contain any 

blue point. 

126
o
. What biggest number of acute angles can be 

a) in an octagon, 

b) in an eleven-gon? 

127
o
. What biggest number of acute angles can be in a 

convex 10-angle? 

128. The circles are constructed on the sides of a convex 

quadrangle as diameters. Prove that the circles cover all 

the quadrangle. 

129
*
. Prove that in every polygon, having at least 4 

vertexes, it is possible to draw a diagonal that does not 

lead out of this polygon (we presumed it in the solution 

of example 75). 
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130
o
. Prove: among the diagonals of each 10-gon it is 

possible to find either 2 parallel diagonals, or such 2 

diagonals, where the angle, formed by their holding 

straight lines, is smaller than 
o6 . 

131
o
. A regular 9-gon and a regular 10-gon are inscribed 

in the same circumference; their vertexes divide the 

circumference into 19 arcs. Prove that the size of at least 

one arc does not exceed o2 . 

132. What smallest number of triangles can cover a 

convex 12-gon? The triangles may overlap mutually, but 

they must not lead outside the 12-gon. 

133
*
. The length of both diagonals of a convex 

quadrangle is 20. Prove that at least one side is longer 

than 14. 

134
o
. The length of the side of a square is 1. Inside the 

square there are several circumferences, and the sum of 

their lengths is 30. Prove that it is possible to draw a 

straight line that intersects at least 10 of them. 

135
*
. In the circle with the radius 1 there are several 

segments, whose sum of lengths is 32. Prove that it is 

possible to draw a straight line that intersects 

a) at least 8, 

b) at least 9 segments. 

136
*
. Given is a circle with radius 2. What smallest 

number of circles with radius 1 must be drawn, so that 

the initial circle is completely covered? 

137
o
. Prove: in the circle with radius 14 it is not possible 

to mark 226 points so, that the distance between every 

two of them exceeds 2. 

138
*
. In a square, whose length of side is 1, 170 points 

are chosen. 
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Prove: it is possible to find two of them within the 

distance not exceeding 0.009. 

139. Inside the square with side length 15 there are 20 

small squares with side length 1 each. 

Prove that inside the “big square” it is possible to place a 

circle with radius 1 having no common point with any of 

the small squares. 

140
o
. On the plane there are given 10 points and a 

circumference with radius 1. Prove that it is possible to 

find such a point on the circumference, whose sum of 

distances to the 10 points mentioned before exceeds 10. 

141. Five points with integer coordinates are given in the 

plane. 

Prove: at least on one of the segments, connecting these 

points in pairs, we can find some other point with integer 

coordinates. 

142
*
. Inside a convex 10-gon a point is marked, which is 

not situated on any diagonal. A hare is sitting there, but a 

hunter is standing on each vertex. All the hunters 

simultaneously fire at the hare, but at that moment the 

hare crouches down and the bullets miss him (we 

presume that the bullets do not hit one another). Prove 

that at least one side of the 10-angle will not be hit. 

143. 13 straight lines are drawn; each of them divides the 

square ABCD into 2 trapezia, but the ratio of their areas 

is 1 : 2. Prove that at least 4 of these straight lines lead 

through the same point. 

144
k
. A closed broken line connects all the vertexes of a 

regular 20-angle. Prove that the line has at least 2 parallel 

segments. 
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145
*
. A piece of paper consists of 10 x 10 identical 

quadratic cells. Several squares are marked so, that 

simultaneously 

a) the sides of each marked square run along 

the borders of the cells, 

b) no marked square covers any other one 

completely. 

What biggest number of the squares can be marked? 

146. The sides and diagonals of a convex n-gon are 

passages of a labyrinth. What smallest number of electric 

bulbs must be put in the labyrinth to make it fully 

lighted? No 3 diagonals intersect in the same point. 

147
*
. The shape of the room is a 30-gon. Prove that it is 

definitely possible to illuminate it with 10 lamps. 

148. Devise a room in a shape of 30-gon, for whose 

lighting at least 10 lamps are necessary. 

149. A square consists of 10 x 10 cells. What biggest 

quantity of the cells’ centres is it possible to paint so, that 

no 3 painted points are on the same straight line? 

150
k
. The inner parts of the sides of a regular triangle are 

mirrors. A beam of light is let inside it. The beam is 

moving in accordance with the rule “the angle of 

incidence is equal to the angle of reflection” (see Fig. 66). 

It is known that the ray has passed 7 times through some 

point. Prove that some time this ray will pass through this 

point again. 

 

Fig. 66  


