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About the LAIMA series

In 1990, the international team competition ”Baltic Way”
was organized for the first time. The competition gained its
name from the mass action in August, 1989, when over a
million people stood hand in hand along the Tallinn – Riga
– Vilnius road, demonstrating their will for freedom.
Today ”Baltic Way” has all the countries around the Baltic
Sea (and also Iceland) as its participants. Inviting Iceland
is a special case remembering that it was the first country
in the world which officially recognized the independence of
Lithuania, Latvia and Estonia in 1991.
The ”Baltic Way” competition has given rise to other math-
ematical activities, too. One of them is the project LAIMA
(Latvian – Icelandic Mathematics Project). Its aim is to
publish a series of books covering all essential topics in the
arena of mathematical competitions.
Mathematical olympiads today have become an important
and essential part of the education system. In some sense
they provide high standards for teaching mathematics on an
advanced level. Many outstanding scientists are involved in
composing problems for competitions. The ”olympiad cur-
riculum”, considered all over the world, is a good reflection
of important mathematical ideas on elementary level.
It is the opinion of the publishers of the LAIMA series that
there are relatively few important topics which cover almost
everything that the the international mthematical commu-
nity has recognized as worthy to be included regularly in the
search and promotion of young talent. This (clearly subjec-
tive) opinion is reflected in the list of teaching aids which
are to be prepared within the LAIMA project.
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Seventeen books have been published so far in Lat-
vian. They are also electronically available in the web
page of the Latvian Education Information System (LIIS),
http://www.liis.lv. As LAIMA is rather a process than
a project, there is no idea of a final date; many of the al-
ready published teaching aids are second or third versions
and they will be extended regularly.
Benedict Johannesson, President of the Icelandic Society
of Mathematics, gave inspiration to the LAIMA project in
1996. Being a co-author of many LAIMA publications, he
also was the main sponsor for many years.
This book is the third LAIMA publication in English. It
was sponsored by the Scandinavian ”Nord Plus Neighbours”
foundation.
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FOREWORD

The Nordic Mathematical Competition, NMC, has its roots
in the International Mathematical Olympiads, IMO’s. In
the 1986 IMO in Warsaw the leaders of the Nordic teams
realized that one reason behind the rather mediocre if not
bad success of their teams was lack of competition experi-
ence at a more difficult level. The countries did not possess
a large-scale multistage national mathematical competition,
and the existing competitions were rather easy. As a remedy
to the situation, a cheap and easily manageable competition
was proposed, and the NMC has been arranged every year
since 1987. This means that there are now 20 problem sets
of the NMC, and to make them available seems to be ap-
propriate.

The way the NMC is run has remained unchanged. The
five participating Nordic countries, Denmark, Finland, Ice-
land, Norway, and Sweden, alternate as the host or or-
ganizing country. Each country has a contact person re-
sponsible for the management of the competition in her or
his country. The organizer solicits problem proposals from
the other countries, prepares the problem sheet consisting
of four problems. The level of the problems is moderate,
clearly below the IMO difficulty. The text is accepted by
the other countries and translated into the five languages
used in the countries. Each country is allowed to enroll
20 participants. They are students considered to be possi-
ble candidates for the IMO team, and in each country, the
NMC is one of the main criteria used in selection of the
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team. Eligibility criteria thus are the same as in the IMO:
the participants are secondary school students and less than
20 years old. The competition takes place in March or April.
Each student does the problems in her or his own school un-
der the school’s supervision. The time allowed is four hours.
The schools have never refused their cooperation. The an-
swers are marked preliminarily in each country, and then
sent, together with necessary translations, to the organizing
country, which coordinates the marking. The results and
diplomas – always in the language of the organizing coun-
try – are ready to be mailed before the end of the school
semester in May.
This collection contains the problems and solutions of the
first 20 NMC’s. As quite a number of people have been
involved in creating and choosing the competition problems
in this period, the compiler has been able to utilize the fruits
of much collective work. In most cases, the solution ideas
go back to the origal proposers.
The problem texts of the NMC’s have always been prepared
in English, but in the preparation of this booklet, not all of
these texts were available. The majority of the problems
have been translated from the Finnish problem sheets. This
may cause minor differences to the ”official texts”, which, on
the other hand, have not actually been used in the compe-
titions, as the competitors have worked in Danish, Finnish,
Icelandic, Norwegian, or Swedish. Sometimes explanatory
notes have been included in the problem texts. These have
been preserved, although they sometimes seem to be unnec-
essary. Also, there is some variation in notation and in the
ways some words have been italicized in the problem texts.
The original notation and italicization have been preserved.
The solutions sometimes utilize standard abbreviations like
”sas” for the theorem (or axiom) on the congruence of trian-
gle with two pairs of equal sides and an equal angle between
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them. The notations used are standard. Results referenced
to in the solutions are those one usually meets in the field of
”olympiad mathematics”. Some of these are rather distant
from the usual school curriculum.
A good competition problem often can be approached from
a number of different angles. The solutions in this book-
let are by no means the only possible ones. In some in-
stances, alternative solutions are given, but anyone trying
these problems should delight himself when finding another,
correct solution. The compiler of this collection is happy to
receive any such solutions, for instance to to his email ad-
dress, matti.lehtinen@helsinki.fi.

Helsinki, Finland, August 2006
Matti Lehtinen



9

PROBLEMS

NMC 1, March 30, 1987

87.1. Nine journalists from different countries attend a
press conference. None of these speaks more than three
languages, and each pair of the journalists share a common
language. Show that there are at least five journalists shar-
ing a common language.

87.2. Let ABCD be a parallelogram in the plane. We
draw two circles of radius R, one through the points A and
B, the other through B and C. Let E be the other point of
intersection of the circles. We assume that E is not a vertex
of the parallelogram. Show that the circle passing through
A, D, and E also has radius R.

87.3. Let f be a strictly increasing function defined in the
set of natural numbers satisfying the conditions f(2) = a >
2 and f(mn) = f(m)f(n) for all natural numbers m and n.
Determine the smallest possible value of a.

87.4. Let a, b, and c be positive real numbers. Prove:

a

b
+

b

c
+

c

a
≤ a2

b2
+

b2

c2
+

c2

a2
.
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NMC 2, April 4, 1988

88.1. The positive integer n has the following property:
if the three last digits of n are removed, the number 3

√
n

remains. Find n.
88.2. Let a, b, and c be non-zero real numbers and let
a ≥ b ≥ c. Prove the inequality

a3 − c3

3
≥ abc

(
a − b

c
+

b − c

a

)
.

When does equality hold?
88.3. Two concentric spheres have radii r and R, r < R.
We try to select points A, B and C on the surface of the
larger sphere such that all sides of the triangle ABC would
be tangent to the surface of the smaller sphere. Show that
the points can be selected if and only if R ≤ 2r.
88.4. Let mn be the smallest value of the function

fn(x) =
2n∑

k=0

xk.

Show that mn → 1
2 , as n → ∞.

NMC 3, April 10, 1989

89.1. Find a polynomial P of lowest possible degree such
that
(a) P has integer coefficients,
(b) all roots of P are integers,
(c) P (0) = −1,
(d) P (3) = 128.
89.2. Three sides of a tetrahedron are right-angled triangles
having the right angle at their common vertex. The areas
of these sides are A, B, and C. Find the total surface area
of the tetrahedron.
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89.3. Let S be the set of all points t in the closed interval
[−1, 1] such that for the sequence x0, x1, x2, . . . defined by
the equations x0 = t, xn+1 = 2x2

n−1, there exists a positive
integer N such that xn = 1 for all n ≥ N . Show that the
set S has infinitely many elements.
89.4. For which positive integers n is the following state-
ment true: if a1, a2, . . . , an are positive integers, ak ≤ n for
all k and

∑n
k=1 ak = 2n, then it is always possible to choose

ai1 , ai2 , . . . , aij
in such a way that the indices i1, i2, . . . , ij

are different numbers, and
∑j

k=1 aik
= n?

NMC 4, April 5, 1990

90.1. Let m, n, and p be odd positive integers. Prove that
the number

(n−1)p∑
k=1

km

is divisible by n.
90.2. Let a1, a2, . . . , an be real numbers. Prove

3

√
a3
1 + a3

2 + . . . + a3
n ≤

√
a2
1 + a2

2 + . . . + a2
n. (1)

When does equality hold in (1)?
90.3. Let ABC be a triangle and let P be an interior point
of ABC. We assume that a line l, which passes through P ,
but not through A, intersects AB and AC (or their exten-
sions over B or C) at Q and R, respectively. Find l such that
the perimeter of the triangle AQR is as small as possible.
90.4. It is possible to perform three operations f , g, and
h for positive integers: f(n) = 10n, g(n) = 10n + 4, and
h(2n) = n; in other words, one may write 0 or 4 in the
end of the number and one may divide an even number by
2. Prove: every positive integer can be constructed starting
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from 4 and performing a finite number of the operations f ,
g, and h in some order.

NMC 5, April 10, 1991

91.1. Determine the last two digits of the number

25 + 252
+ 253

+ · · · + 251991
,

written in decimal notation.

91.2. In the trapezium ABCD the sides AB and CD are
parallel, and E is a fixed point on the side AB. Determine
the point F on the side CD so that the area of the intersec-
tion of the triangles ABF and CDE is as large as possible.

91.3. Show that

1
22

+
1
32

+ . . . +
1
n2

<
2
3

for all n ≥ 2.

91.4. Let f(x) be a polynomial with integer coefficients.
We assume that there exists a positive integer k and k con-
secutive integers n, n + 1, . . . , n + k − 1 so that none of the
numbers f(n), f(n + 1), . . . , f(n + k − 1) is divisible by k.
Show that the zeroes of f(x) are not integers.

NMC 6, April 8, 1992

92.1. Determine all real numbers x > 1, y > 1, and z > 1,
satisfying the equation

x + y + z +
3

x − 1
+

3
y − 1

+
3

z − 1

= 2
(√

x + 2 +
√

y + 2 +
√

z + 2
)

.
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92.2. Let n > 1 be an integer and let a1, a2, . . . , an be n
different integers. Show that the polynomial

f(x) = (x − a1)(x− a2) · . . . · (x − an) − 1

is not divisible by any polynomial with integer coefficients
and of degree greater than zero but less than n and such
that the highest power of x has coefficient 1.

92.3. Prove that among all triangles with inradius 1, the
equilateral one has the smallest perimeter .

92.4. Peter has many squares of equal side. Some of the
squares are black, some are white. Peter wants to assemble
a big square, with side equal to n sides of the small squares,
so that the big square has no rectangle formed by the small
squares such that all the squares in the vertices of the rect-
angle are of equal colour. How big a square is Peter able to
assemble?

NMC 7, March 17, 1993

93.1. Let F be an increasing real function defined for all x,
0 ≤ x ≤ 1, satisfying the conditions

(i) F
(x

3

)
=

F (x)
2

,

(ii) F (1 − x) = 1 − F (x).

Determine F

(
173
1993

)
and F

(
1
13

)
.

93.2. A hexagon is inscribed in a circle of radius r. Two
of the sides of the hexagon have length 1, two have length
2 and two have length 3. Show that r satisfies the equation

2r3 − 7r − 3 = 0.
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93.3. Find all solutions of the system of equations⎧⎪⎨
⎪⎩

s(x) + s(y) = x

x + y + s(z) = z

s(x) + s(y) + s(z) = y − 4,

where x, y, and z are positive integers, and s(x), s(y), and
s(z) are the numbers of digits in the decimal representations
of x, y, and z, respectively.
93.4. Denote by T (n) the sum of the digits of the decimal
representation of a positive integer n.
a) Find an integer N , for which T (k · N) is even for all k,
1 ≤ k ≤ 1992, but T (1993 · N) is odd.
b) Show that no positive integer N exists such that T (k ·N)
is even for all positive integers k.

NMC 8, March 17, 1994

94.1. Let O be an interior point in the equilateral triangle
ABC, of side length a. The lines AO, BO, and CO intersect
the sides of the triangle in the points A1, B1, and C1. Show
that

|OA1| + |OB1| + |OC1| < a.

94.2. We call a finite plane set S consisting of points with
integer coefficients a two-neighbour set , if for each point
(p, q) of S exactly two of the points (p + 1, q), (p, q + 1),
(p− 1, q), (p, q− 1) belong to S. For which integers n there
exists a two-neighbour set which contains exactly n points?
94.3. A piece of paper is the square ABCD. We fold it by
placing the vertex D on the point D′ of the side BC. We
assume that AD moves on the segment A′D′ and that A′D′

intersects AB at E. Prove that the perimeter of the triangle
EBD′ is one half of the perimeter of the square.
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94.4. Determine all positive integers n < 200, such that
n2 + (n + 1)2 is the square of an integer.

NMC 9, March 15, 1995

95.1. Let AB be a di-
ameter of a circle with
centre O. We choose
a point C on the cir-
cumference of the cir-
cle such that OC and
AB are perpendicular
to each other. Let P be
an arbitrary point on the (smaller) arc BC and let the lines
CP and AB meet at Q. We choose R on AP so that RQ
and AB are perpendicular to each other. Show that |BQ| =
|QR|.
95.2. Messages are coded using sequences consisting of ze-
roes and ones only. Only sequences with at most two consec-
utive ones or zeroes are allowed. (For instance the sequence
011001 is allowed, but 011101 is not.) Determine the num-
ber of sequences consisting of exactly 12 numbers.

95.3. Let n ≥ 2 and let x1, x2, . . . xn be real numbers
satisfying x1 +x2 + . . . +xn ≥ 0 and x2

1 +x2
2 + . . . +x2

n = 1.
Let M = max{x1, x2, . . . , xn}. Show that

M ≥ 1√
n(n − 1)

. (1)

When does equality hold in (1)?

95.4. Show that there exist infinitely many mutually non-
congruent triangles T , satisfying

(i) The side lengths of T are consecutive integers.
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(ii) The area of T is an integer.

NMC 10, April 11, 1996

96.1. Show that there exists an integer divisible by 1996
such that the sum of the its decimal digits is 1996.
96.2. Determine all real numbers x, such that

xn + x−n

is an integer for all integers n.
96.3. The circle whose diameter is the altitude dropped
from the vertex A of the triangle ABC intersects the sides
AB and AC at D and E, respectively (A �= D, A �= E).
Show that the circumcentre of ABC lies on the altitude
dropped from the vertex A of the triangle ADE, or on its
extension.
96.4. The real-valued function f is defined for positive in-
tegers, and the positive integer a satisfies

f(a) = f(1995), f(a+1) = f(1996), f(a+2) = f(1997)

f(n + a) =
f(n)− 1
f(n) + 1

for all positive integers n.

(i) Show that f(n + 4a) = f(n) for all positive integers n.
(ii) Determine the smallest possible a.

NMC 11, April 9, 1997

97.1. Let A be a set of seven positive numbers. Determine
the maximal number of triples (x, y, z) of elements of A
satisfying x < y and x + y = z.
97.2. Let ABCD be a convex quadrilateral. We assume
that there exists a point P inside the quadrilateral such that
the areas of the triangles ABP , BCP , CDP , and DAP
are equal. Show that at least one of the diagonals of the
quadrilateral bisects the other diagonal.
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97.3. Let A, B, C, and D be four different points in the
plane. Three of the line segments AB, AC, AD, BC, BD,
and CD have length a. The other three have length b, where

b > a. Determine all possible values of the quotient
b

a
.

97.4. Let f be a function defined in the set {0, 1, 2, . . . } of
non-negative integers, satisfying f(2x) = 2f(x), f(4x+1) =
4f(x) + 3, and f(4x− 1) = 2f(2x − 1) − 1. Show that f is
an injection, i.e. if f(x) = f(y), then x = y.

NMC 12, April 2, 1998

98.1. Determine all functions f defined in the set of rational
numbers and taking their values in the same set such that
the equation f(x + y) + f(x− y) = 2f(x) + 2f(y) holds for
all rational numbers x and y.

98.2. Let C1 and C2 be two circles intersecting at A and B.
Let S and T be the centres of C1 and C2, respectively. Let
P be a point on the segment AB such that |AP | �= |BP |
and P �= A, P �= B. We draw a line perpendicular to SP
through P and denote by C and D the points at which this
line intersects C1. We likewise draw a line perpendicular to
TP through P and denote by E and F the points at which
this line intersects C2. Show that C, D, E, and F are the
vertices of a rectangle.

98.3. (a) For which positive numbers n does there exist
a sequence x1, x2, . . . , xn, which contains each of the num-
bers 1, 2, . . . , n exactly once and for which x1+x2+ · · ·+xk

is divisible by k for each k = 1, 2, . . . , n?

(b) Does there exist an infinite sequence x1, x2, x3, . . .,
which contains every positive integer exactly once and such
that x1 + x2 + · · · + xk is divisible by k for every positive
integer k?

98.4. Let n be a positive integer. Count the number of
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numbers k ∈ {0, 1, 2, . . . , n} such that
(

n

k

)
is odd. Show

that this number is a power of two, i.e. of the form 2p for
some nonnegative integer p.

NMC 13, April 15, 1999

99.1. The function f is defined for non-negative integers
and satisfies the condition

f(n) =
{

f(f(n + 11)), if n ≤ 1999
n − 5, if n > 1999.

Find all solutions of the equation f(n) = 1999.
99.2. Consider 7-gons inscribed in a circle such that all
sides of the 7-gon are of different length. Determine the
maximal number of 120◦ angles in this kind of a 7-gon.
99.3. The infinite integer plane Z × Z = Z

2 consists of
all number pairs (x, y), where x and y are integers. Let
a and b be non-negative integers. We call any move from
a point (x, y) to any of the points (x ± a, y ± b) or (x ±
b, y ± a) a (a, b)-knight move. Determine all numbers a
and b, for which it is possible to reach all points of the
integer plane from an arbitrary starting point using only
(a, b)-knight moves.
99.4. Let a1, a2, . . . , an be positive real numbers and n ≥ 1.
Show that

n

(
1
a1

+ · · · + 1
an

)

≥
(

1
1 + a1

+ · · · + 1
1 + an

)(
n +

1
a1

+ · · · + 1
an

)
.

When does equality hold?
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NMC 14, March 30, 2000

00.1. In how many ways can the number 2000 be written
as a sum of three positive, not necessarily different integers?
(Sums like 1 + 2 + 3 and 3 + 1 + 2 etc. are the same.)
00.2. The persons P1, P1, . . . , Pn−1, Pn sit around a table,
in this order, and each one of them has a number of coins.
In the start, P1 has one coin more than P2, P2 has one coin
more than P3, etc., up to Pn−1 who has one coin more than
Pn. Now P1 gives one coin to P2, who in turn gives two
coins to P3 etc., up to Pn who gives n coins to P1. Now the
process continues in the same way: P1 gives n + 1 coins to
P2, P2 gives n + 2 coins to P3; in this way the transactions
go on until someone has not enough coins, i.e. a person no
more can give away one coin more than he just received.
At the moment when the process comes to an end in this
manner, it turns out that there are two neighbours at the
table such that one of them has exactly five times as many
coins as the other. Determine the number of persons and
the number of coins circulating around the table.
00.3. In the triangle ABC, the bisector of angle B meets
AC at D and the bisector of angle C meets AB at E. The
bisectors meet each other at O. Furthermore, OD = OE.
Prove that either ABC is isosceles or ∠BAC = 60◦.
00.4. The real-valued function f is defined for 0 ≤ x ≤ 1,
f(0) = 0, f(1) = 1, and

1
2
≤ f(z) − f(y)

f(y) − f(x)
≤ 2

for all 0 ≤ x < y < z ≤ 1 with z − y = y − x. Prove that

1
7
≤ f

(
1
3

)
≤ 4

7
.
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NMC 15, March 29, 2001

01.1. Let A be a finite collection of squares in the coordi-
nate plane such that the vertices of all squares that belong
to A are (m, n), (m + 1, n), (m, n + 1), and (m + 1, n + 1)
for some integers m and n. Show that there exists a sub-
collection B of A such that B contains at least 25 % of the
squares in A, but no two of the squares in B have a common
vertex.
01.2. Let f be a bounded real function defined for all real
numbers and satisfying for all real numbers x the condition

f

(
x +

1
3

)
+ f

(
x +

1
2

)
= f(x) + f

(
x +

5
6

)
.

Show that f is periodic. (A function f is bounded, if there
exists a number L such that |f(x)| < L for all real numbers
x. A function f is periodic, if there exists a positive number
k such that f(x + k) = f(x) for all real numbers x.)
01.3. Determine the number of real roots of the equation

x8 − x7 + 2x6 − 2x5 + 3x4 − 3x3 + 4x2 − 4x +
5
2

= 0.

01.4. Let ABCDEF be a convex hexagon, in which each
of the diagonals AD, BE, and CF divides the hexagon into
two quadrilaterals of equal area. Show that AD, BE, and
CF are concurrent.

NMC 16, April 4, 2002

02.1. The trapezium ABCD, where AB and CD are par-
allel and AD < CD, is inscribed in the circle c. Let DP
be a chord of the circle, parallel to AC. Assume that the
tangent to c at D meets the line AB at E and that PB and
DC meet at Q. Show that EQ = AC.
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02.2. In two bowls there are in total N balls, numbered
from 1 to N . One ball is moved from one of the bowls
into the other. The average of the numbers in the bowls
is increased in both of the bowls by the same amount, x.
Determine the largest possible value of x.
02.3. Let a1, a2, . . . , an, and b1, b2, . . . , bn be real numbers,
and let a1, a2, . . . , an be all different. Show that if all the
products

(ai + b1)(ai + b2) · · · (ai + bn),

i = 1, 2, . . . , n, are equal, then the products

(a1 + bj)(a2 + bj) · · · (an + bj),

j = 1, 2, . . . , n, are equal, too.

02.4. Eva, Per and Anna play with their pocket calcula-
tors. They choose different integers and check, whether or
not they are divisible by 11. They only look at nine-digit
numbers consisting of all the digits 1, 2, . . . , 9. Anna claims
that the probability of such a number to be a multiple of 11
is exactly 1/11. Eva has a different opinion: she thinks the
probability is less than 1/11. Per thinks the probability is
more than 1/11. Who is correct?

NMC 17, April 3, 2003

03.1. Stones are placed on the squares of a chessboard
having 10 rows and 14 columns. There is an odd number
of stones on each row and each column. The squares are
coloured black and white in the usual fashion. Show that
the number of stones on black squares is even. Note that
there can be more than one stone on a square.
03.2. Find all triples of integers (x, y, z) satisfying

x3 + y3 + z3 − 3xyz = 2003.
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03.3. The point D inside the equilateral triangle �ABC
satisfies ∠ADC = 150◦. Prove that a triangle with side
lengths |AD|, |BD|, |CD| is necessarily a right-angled tri-
angle.
03.4. Let R

∗ = R\{0} be the set of non-zero real numbers.
Find all functions f : R

∗ → R
∗ satisfying

f(x) + f(y) = f(xy f(x + y)),

for x, y ∈ R
∗ and x + y �= 0.

NMC 18, April 1, 2004

04.1. 27 balls, labelled by numbers from 1 to 27, are in a
red, blue or yellow bowl. Find the possible numbers of balls
in the red bowl, if the averages of the labels in the red, blue,
and yellow bowl are 15, 3 ja 18, respectively.
04.2. Let f1 = 0, f2 = 1, and fn+2 = fn+1 + fn, for n = 1,
2, . . ., be the Fibonacci sequence. Show that there exists a
strictly increasing infinite arithmetic sequence none of whose
numbers belongs to the Fibonacci sequence. [A sequence is
arithmetic, if the difference of any of its consecutive terms
is a constant.]
04.3. Let x11, x21, . . . , xn1, n > 2, be a sequence of inte-
gers. We assume that all of the numbers xi1 are not equal.
Assuming that the numbers x1k, x2k, . . . , xnk have been
defined, we set

xi,k+1 =
1
2
(xik + xi+1,k), i = 1, 2, . . . , n − 1,

xn,k+1 =
1
2
(xnk + x1k).

Show that for n odd, xjk is not an integer for some j, k.
Does the same conclusion hold for n even?
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04.4. Let a, b, and c be the side lengths of a triangle and
let R be its circumradius. Show that

1
ab

+
1
bc

+
1
ca

≥ 1
R2

.

NMC 19. April 5, 2005

05.1. Find all positive integers k such that the product of
the digits of k, in the decimal system, equals

25
8

k − 211.

05.2. Let a, b, and c be positive real numbers. Prove that

2a2

b + c
+

2b2

c + a
+

2c2

a + b
≥ a + b + c.

05.3. There are 2005 young people sitting around a (large!)
round table. Of these at most 668 are boys. We say that a
girl G is in a strong position, if, counting from G to either
direction at any length, the number of girls is always strictly
larger than the number of boys. (G herself is included in
the count.) Prove that in any arrangement, there always is
a girl in a strong position.

05.4. The circle C1 is inside the circle C2, and the circles
touch each other at A. A line through A intersects C1 also
at B and C2 also at C. The tangent to C1 at B intersects C2

at D and E. The tangents of C1 passing through C touch
C1 at F and G. Prove that D, E, F , and G are concyclic.
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NMC 20. March 30, 2006

06.1. Let B and C be points on two fixed rays emanating
from a point A such that AB + AC is constant. Prove that
there exists a point D �= A such that the circumcircles of
the triangels ABC pass through D for every choice of B and
C.
06.2. The real numbers x, y and z are not all equal and
they satisfy

x +
1
y

= y +
1
z

= z +
1
x

= k.

Determine all possible values of k.
06.3. A sequence of positive integers {an} is given by

a0 = m and an+1 = a5
n + 487

for all n ≥ 0. Determine all values of m for which the
sequence contains as many square numbers as possible.
06.4. The squares of a 100 × 100 chessboard are painted
with 100 different colours. Each square has only one colour
and every colour is used exactly 100 times. Show that there
exists a row or a column on the chessboard in which at least
10 colours are used.
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SOLUTIONS

87.1. Nine journalists from different countries attend a
press conference. None of these speaks more than three lan-
guages, and each pair of the journalists share a common
language. Show that there are at least five journalists shar-
ing a common language.

Solution. Assume the journalists are J1, J2, . . . , J9. As-
sume that no five of them have a common language. Assume
the languages J1 speaks are L1, L2, and L3. Group J2, J3,
. . . , J9 according to the language they speak with J1. No
group can have more than three members. So either there
are three groups of three members each, or two groups with
three members and one with two. Consider the first alter-
native. We may assume that J1 speaks L1 with J2, J3, and
J4, L2 with J5, J6, and J7, and L3 with J8, J9, and J2 .
Now J2 speaks L1 with J1, J3, and J4, L3 with J1, J8, and
J9. J2 must speak a fourth language, L4, with J5, J6, and
J7. But now J5 speaks both L2 and L4 with J2, J6, and J7.
So J5 has to use his third language with J1, J4, J8, and J9.
This contradicts the assumption we made. So we now may
assume that J1 speaks L3 only with J8 and J9. As J1 is not
special, we conclude that for each journalist Jk, the remain-
ing eight are divided into three mutually exclusive language
groups, one of which has only two members. Now J2 uses
L1 with three others, and there has to be another language
he also speaks with three others. If this were L2 or L3, a
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group of five would arise (including J1). So J2 speaks L4

with three among J5, . . . , J9. Either two of these three are
among J5, J6, and J7, or among J8, J9. Both alternatives
lead to a contradiction to the already proved fact that no
pair of journalists speaks two languages together. The proof
is complete.

Figure 1.

87.2. Let ABCD be a parallelogram in the plane. We draw
two circles of radius R, one through the points A and B,
the other through B and C. Let E be the other point of
intersection of the circles. We assume that E is not a vertex
of the parallelogram. Show that the circle passing through A,
D, and E also has radius R.

Solution. (See Figure 1.) Let F and G be the centers of
the two circles of radius R passing through A and B; and
B and C, respectively. Let O be the point for which the
the rectangle ABGO is a parallelogram. Then ∠OAD =
∠GBC, and the triangles OAD and GBC are congruent
(sas). Since GB = GC = R, we have OA = OD = R.
The quadrangle EFBG is a rhombus. So EF ‖GB ‖OA.
Moreover, EF = OA = R, which means that AFEO is a
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parallelogram. But this implies OE = AF = R. So A, D,
and E all are on the circle of radius R centered at O.
87.3. Let f be a strictly increasing function defined in the
set of natural numbers satisfying the conditions f(2) = a >
2 and f(mn) = f(m)f(n) for all natural numbers m and n.
Determine the smallest possible value of a.
Solution. Since f(n) = n2 is a function satisfying the
conditions of the problem, the smallest posiible a is at most
4. Assume a = 3. It is easy to prove by induction that
f(nk) = f(n)k for all k ≥ 1. So, taking into account that f
is strictly increasing, we get

f(3)4 = f(34) = f(81) > f(64) = f(26) = f(2)6

= 36 = 272 > 252 = 54

as well as

f(3)8 = f(38) = f(6561) < f(8192)
= f(213) = f(2)13 = 313 < 68.

So we arrive at 5 < f(3) < 6. But this is not possible, since
f(3) is an integer. So a = 4.
87.4. Let a, b, and c be positive real numbers. Prove:

a

b
+

b

c
+

c

a
≤ a2

b2
+

b2

c2
+

c2

a2
.

Solution. The arithmetic-geometric inequality yields

3 = 3
3

√
a2

b2
· b2

c2
· c2

a2
≤ a2

b2
+

b2

c2
+

c2

a2
,

or
√

3 ≤
√

a2

b2
+

b2

c2
+

c2

a2
. (1)
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On the other hand, the Cauchy–Schwarz inequality implies

a

b
+

b

c
+

c

a
≤
√

12 + 12 + 12

√
a2

b2
+

b2

c2
+

c2

a2

=
√

3

√
a2

b2
+

b2

c2
+

c2

a2
.

(2)

We arrive at the inequality of the problem by combining (1)
and (2).
88.1. The positive integer n has the following property: if
the three last digits of n are removed, the number 3

√
n re-

mains. Find n.
Solution. If x = 3

√
n, and y, 0 ≤ y < 1000, is the number

formed by the three last digits of n, we have

x3 = 1000x + y.

So x3 ≥ 1000x, x2 > 1000, and x > 31. On the other hand,
x3 < 1000x + 1000, or x(x2 − 1000) < 1000. The left hand
side of this inequality is an increasing function of x, and
x = 33 does not satisfy the inequality. So x < 33. Since x
is an integer, x = 32 and n = 323 = 32768.
88.2. Let a, b, and c be non-zero real numbers and let
a ≥ b ≥ c. Prove the inequality

a3 − c3

3
≥ abc

(
a − b

c
+

b − c

a

)
.

When does equality hold?
Solution. Since c−b ≤ 0 ≤ a−b, we have (a−b)3 ≥ (c−b)3,
or

a3 − 3a2b + 3ab2 − b3 ≥ c3 − 3bc2 + 3b2c − b3.

On simplifying this, we immediately have

1
3
(a3 − c3) ≥ a2b − ab2 + b2c − bc2 = abc

(
a − b

c
+

b − c

a

)
.
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A sufficient condition for equality is a = c. If a > c, then
(a − b)3 > (c − b)3, which makes the proved inequality a
strict one. So a = c is a necessary condition for equality,
too.
88.3. Two concentric spheres have radii r and R, r < R.
We try to select points A, B and C on the surface of the
larger sphere such that all sides of the triangle ABC would
be tangent to the surface of the smaller sphere. Show that
the points can be selected if and only if R ≤ 2r.
Solution. Assume A, B, and C lie on the surface Γ of a
sphere of radius R and center O, and AB, BC, and CA
touch the surface γ of a sphere of radius r and center O.
The circumscribed and inscribed circles of ABC then are
intersections of the plane ABC with Γ and γ, respectively.
The centers of these circles both are the foot D of the per-
pendicular dropped from O to the plane ABC. This point
lies both on the angle bisectors of the triangle ABC and on
the perpendicular bisectors of its sides. So these lines are
the same, which means that the triangle ABC is equilateral,
and the center of the circles is the common point of inter-
section of the medians of ABC. This again implies that the
radii of the two circles are 2r1 and r1 for some real number
r1. Let OD = d. Then 2r1 =

√
R2 − d2 and r1 =

√
r2 − d2.

Squaring, we get R2 − d2 = 4r2 − 4d2, 4r2 − R2 = 3d2 ≥ 0,
and 2r ≥ R.
On the other hand, assume 2r ≥ R. Consider a plane at the
distance

d =

√
4r2 − R2

3
from the common center of the two spheres. The plane cuts
the surfaces of the spheres along concentric circles of radii

r1 =

√
R2 − r2

3
, R1 = 2

√
R2 − r2

3
.
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The points A, B, and C can now be chosen on the latter
circle in such a way that ABC is equilateral.
88.4. Let mn be the smallest value of the function

fn(x) =
2n∑

k=0

xk.

Show that mn → 1
2 , as n → ∞.

Solution. For n > 1,

fn(x) = 1 + x + x2 + · · ·
= 1 + x(1 + x2 + x4 + · · ·) + x2(1 + x2 + x4 · · ·)

= 1 + x(1 + x)
n−1∑
k=0

x2k.

From this we see that fn(x) ≥ 1, for x ≤ −1 and x ≥ 0.
Consequently, fn attains its minimum value in the interval
(−1, 0). On this interval

fn(x) =
1 − x2n+1

1 − x
>

1
1 − x

>
1
2
.

So mn ≥ 1
2
. But

mn ≤ fn

(
−1 +

1√
n

)
=

1

2 − 1√
n

+

(
1 − 1√

n

)2n+1

2 − 1√
n

.

As n → ∞, the first term on the right hand side tends to

the limit
1
2
. In the second term, the factor

(
1 − 1√

n

)2n

=

((
1 − 1√

n

)√
n
)2

√
n
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of the nominator tehds to zero, because

lim
k→∞

(
1 − 1

k

)k

= e−1 < 1.

So limn→∞ mn =
1
2
.

89.1 Find a polynomial P of lowest possible degree such that
(a) P has integer coefficients,
(b) all roots of P are integers,
(c) P (0) = −1,
(d) P (3) = 128.
Solution. Let P be of degree n, and let b1, b2, . . . , bm be
its zeroes. Then

P (x) = a(x − b1)r1(x − b2)r2 · · · (x − bm)rm ,

where r1, r2, . . . , rm ≥ 1, and a is an integer. Because
P (0) = −1, we have abr1

1 br2
2 · · · brm

m (−1)n = −1. This can
only happen, if |a| = 1 and |bj | = 1 for all j = 1, 2, . . . , m.
So

P (x) = a(x − 1)p(x + 1)n−p

for some p, and P (3) = a ·2p22n−2p = 128 = 27. So 2n−p =
7. Because p ≥ 0 and n are integers, the smallest possible
n, for which this condition can be true is 4. If n = 4, then
p = 1, a = 1. – The polynomial P (x) = (x − 1)(x + 1)3

clearly satisfies the conditions of the problem.
89.2. Three sides of a tetrahedron are right-angled triangles
having the right angle at their common vertex. The areas of
these sides are A, B, and C. Find the total surface area of
the tetrahedron.
Solution 1. Let PQRS be the tetrahedron of the problem
and let S be the vertex common to the three sides which
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are right-angled triangles. Let the areas of PQS, QRS,
and RPS be A, B, and C, respectively. Denote the area
of QRS by X. If SS′ is the altitude from S (onto PQR)
and ∠RSS′ = α, ∠PSS′ = β, ∠QSS′ = γ, the rectangular
parallelepiped with SS′ as a diameter, gives by double use
of the Pythagorean theorem

SS′2 = (SS′ cosα)2 + (SS′ sin α)2

= (SS′ cosα)2 + (SS′ cosβ)2 + (SS′ cos γ)2,

or
cos2 α + cos2 β + cos2 γ = 1 (1)

(a well-known formula). The magnitude of the dihedral an-
gle between two planes equals the angle between the nor-
mals of the planes. So α, β, and γ are the magnitudes
of the dihedral angles between PQR and PQS, QRS, and
RPS, respectively. Looking at the projections of PQR
onto the three other sides of PQRS, we get A = X cosα,
B = X cosβ, and C = X cosγ. But (1) now yields
X2 = A2 + B2 + C2. The total area of PQRS then equals
A + B + C +

√
A2 + B2 + C2.

Solution 2. Use the symbols introduced in the first so-

lution. Align the coordinate axes so that
−→
SP = a

−→
i ,

−→
SQ = b

−→
j , and

−→
CR = c

−→
k . The 2A = ab, 2B = bc, and

2C = ac. By the well-known formula for the area of a tri-
angle, we get

2X = |−→PQ ×−→
PR| = |(b−→j − a

−→
i ) × (c

−→
k − a

−→
i )|

= |bc−→i + ba
−→
k + ac

−→
j | = 2

√
(bc)2 + (ba)2 + (ac)2

= 2
√

B2 + A2 + c2.

So X =
√

B + A + C, and we have A+B+C+
√

B + A + C
as the total area.
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89.3. Let S be the set of all points t in the closed interval
[−1, 1] such that for the sequence x0, x1, x2, . . . defined by
the equations x0 = t, xn+1 = 2x2

n −1, there exists a positive
integer N such that xn = 1 for all n ≥ N . Show that the
set S has infinitely many elements.

Solution. All numbers in the sequence {xn} lie in the in-
terval [−1, 1]. For each n we can pick an αn such that
xn = cosαn. If xn = cosαn, then xn+1 = 2 cos2 αn − 1 =
cos(2αn). The nuber αn+1 can be chosen as 2αn, and by in-
duction, αn can be chosen as 2nα0. Now xn = 1 if and only
if αn = 2kπ for some integer k. Take S′ = {cos(2−mπ)|m ∈
N}. Since every α0 = 2−mπ multiplied by a sufficiently large
power of 2 is a multiple of 2π, it follows from what was said
above that S′ ⊂ S. Since S′ is infinite, so is S.

89.4 For which positive integers n is the following statement
true: if a1, a2, . . . , an are positive integers, ak ≤ n for all
k and

∑n
k=1 ak = 2n, then it is always possible to choose

ai1 , ai2 , . . . , aij
in such a way that the indices i1, i2, . . . ,

ij are different numbers, and
∑j

k=1 aik
= n?

Solution. The claim is not true for odd n. A counterex-
ample is provided by a1 = a2 = · · · = an = 2. We prove
by induction that the claim is true for all even n = 2k. If
k = 1, then a1 + a2 = 4 and 1 ≤ a1, a2 ≤ 2, so necessarily
a1 = a2 = 2. A choice satisfying the condition of the prob-
lem is a1. Now assume that the claim holds for any 2k − 2
integers with sum 4k − 4. Let a1, a2, . . ., a2k be positive
integers ≤ 2k with sum 4k. If one of the numbers is 2k, the
case is clear: this number alone can form the required sub-
set. So we may assume that all the numbers are ≤ 2k − 1.
If there are at least two 2’s among the numbers, we apply
our induction hypothesis to the 2k − 2 numbers which are
left when two 2’s are removed. the sum of these numbers
is 4k − 4, so among them there is a subcollection with sum
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2k − 2. Adding one 2 to the collection raises the sum to
2k. As the next case we assume that there are no 2’s among
the numbers. Then there must be some 1’s among them.
Assume there are x 1’s among the numbers. Then 2k−x of
the numbers are ≥ 3. So x + 3(2k − x) ≤ 4k or k ≤ x. Now
4k − x is between 2k and 3k, and it is and it is the sum of
more than one of the numbers in the collection, and these
numbers are at least 3 and at most 2k − 1. It follows that
we can find numbers ≥ 3 in the collection with sum between
k and 2k. Adding a sufficient number of 1’s to this collec-
tion we obtain the sum 2k. We still have the case in which
there is exactly one 2 in the collection. Again, denoting the
number of 1’s by x, we obtain x + 2 + 3(2k − x − 1) ≤ 4k,
which implies 2k− 1 ≤ 2x. Because x is an integer, we have
k ≤ x. The rest of the proof goes as in the previous case.
90.1. Let m, n, and p be odd positive integers. Prove that
the number

(n−1)p∑
k=1

km

is divisible by n.
Solution. Since n is odd, the sum has an even number of
terms. So we can write it as

1
2 (n−1)p∑

k=1

(km + ((n − 1)p − k + 1)m) . (1)

Because m is odd, each term in the sum has k+(n−1)p−k+
1 = (n− 1)p +1 as a factor. As p is odd, too, (n− 1)p +1 =
(n − 1)p + 1p has (n − 1) + 1 = n as a factor. So each term
in the sum (1) is divisible by n, and so is the sum.
90.2. Let a1, a2, . . . , an be real numbers. Prove

3

√
a3
1 + a3

2 + . . . + a3
n ≤

√
a2
1 + a2

2 + . . . + a2
n. (1)
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When does equality hold in (1)?
Solution. If 0 ≤ x ≤ 1, then x3/2 ≤ x, and equality holds
if and only if x = 0 or x = 1. – The inequality is true as an
equality, if all the ak’s are zeroes. Assume that at least one
of the numbers ak is non-zero. Set

xk =
a2

k∑n
j=1 a2

j

.

Then 0 ≤ xk ≤ 1, and by the remark above,

n∑
k=1

(
a2

k∑n
j=1 a2

j

)3/2

≤
n∑

k=1

a2
k∑n

j=1 a2
j

= 1.

So
n∑

k=1

a3
k ≤

⎛
⎝ n∑

j1

a2
j

⎞
⎠3/2

,

which is what was supposed to be proved. For equality,
exactly on xk has to be one and the rest have to be zeroes,
which is equivalent to having exactly one of the ak’s positive
and the rest zeroes.
90.3. Let ABC be a triangle and let P be an interior point
of ABC. We assume that a line l, which passes through
P , but not through A, intersects AB and AC (or their ex-
tensions over B or C) at Q and R, respectively. Find l
such that the perimeter of the triangle AQR is as small as
possible.
Solution. (See Figure 2.) Let

s =
1
2
(AR + RQ + QA).

Let C be the excircle of AQR tangent to QR, i.e. the circle
tangent to QR and the extensions of AR and AQ. Denote
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Figure 2.

the center of C by I and the measure of ∠QAR by α. I is

on the bisector of ∠QAR. Hence ∠QAI = ∠IAR =
1
2
α.

Let C touch RQ, the extension of AQ, and the extension of
AR at X, Y , and Z, respectively. Clearly

AQ + QX = AY = AZ = AR + RX,

so
AZ = AI cos

1
2
α = s.

Hence s and the perimeter of AQR is smallest, when AI is
smallest. If P �= X, it is possible to turn the line through P
to push C deeper into the angle BAC. So the minumum for
AI is achieved precisely as X = P . To construct minimal
triangle, we have to draw a circle touching the half lines
AB and AC and passing through P . This is accomplished
by first drawing an arbitrary circle touching the half lines,
and then performing a suitable homothetic transformation
of the circle to make it pass through P .
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90.4. It is possible to perform three operations f , g, and
h for positive integers: f(n) = 10n, g(n) = 10n + 4, and
h(2n) = n; in other words, one may write 0 or 4 in the
end of the number and one may divide an even number by
2. Prove: every positive integer can be constructed starting
from 4 and performing a finite number of the operations f ,
g, and h in some order.

Solution. All odd numbers n are of the form h(2n). All
we need is to show that every even number can be obtained
fron 4 by using the operations f , g, and h. To this end, we
show that a suitably chosen sequence of inverse operations
F = f−1, G = g−1, and H = h−1 produces a smaller even
number or the number 4 from every positive even integer.
The operation F can be applied to numbers ending in a
zero, the operation G can be applied to numbers ending in
4, and H(n) = 2n. We obtain

H(F (10n)) = 2n,

G(H(10n + 2)) = 2n, n ≥ 1,

H(2) = 4,

H(G(10n + 4)) = 2n,

G(H(H(10n + 6))) = 4n + 2,

G(H(H(H(10n + 8)))) = 8n + 6.

After a finite number of these steps, we arrive at 4.

91.1. Determine the last two digits of the number

25 + 252
+ 253

+ · · · + 251991
,

written in decimal notation.

Solution. We first show that all numbers 25k

are of the
form 100p + 32. This can be shown by induction. The case
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k = 1 is clear (25 = 32). Assume 25k

= 100p + 32. Then,
by the binomial formula,

25k+1
=
(
25k
)5

= (100p + 32)5 = 100q + 325

and

(30+2)5 = 305+5·304 ·2+10·303 ·4+10·302 ·8+5·30·16+32
= 100r + 32.

So the last two digits of the sum in the problem are the
same as the last digits of the number 1991 · 32, or 12.
91.2. In the trapezium ABCD the sides AB and CD are
parallel, and E is a fixed point on the side AB. Determine
the point F on the side CD so that the area of the intersec-
tion of the triangles ABF and CDE is as large as possible.

Figure 3.

Solution 1. (See Figure 3.) We assume CD < AB. Let
AD and BC intersect at H and EH and DC at G. Let DE
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intersect AF at P and FB intersect EC at Q. Denote the
area of a figure F by |F|. Since |ABF | does not depend on
the choice of F on DC, |EQFP | is maximized when |AEP |+
|EBQ| is minimized. We claim that this takes place when
F = G. Let R and S be the points of intersection of the
trapezia AEGD and EBCG, respectively. Then RS‖AB.
(To see this, consider the pairs AER and GDR; EBS and
CGS of similar triangles. The ratios of their altitudes are
AE : DG and EB : GC, respectively. But both ratios are
equal to EG : HG. As the sum of the ratios in both pairs
is the altitude of ABCD, the altitudes of, say AER and
EBS are equal, which inplies the claim.) Denote the points
where RS intersects FA and FB by U and V , respectively.
Then |AUR| = |BV S|. (RU and SV are the same fraction
of GF , and both triangles have the same altitude.) Assume
that F lies between G and C. Then

|APE| + |EBQ| > |APE| + |EBS| + |BSV |
= |APE| + |EBS| + |AUR| > |APE| + |EBS| + |APR|

= |ARE| + |EBS|.
A similar inequality can be established, when F is between
G and D. So the choice F = G minimizes |AEP | + |EBQ|
and maximizes |EQFP |. – Proofs in the cases AB = CD
and AB < CD go along similar lines.
Solution 2. We again minimize |AEP |+|EBQ|. Set AB =
a, CD = b, AE = c, DF = x, and denote the altitude of
ABCD by h and the altitudes of AEP and EBQ by h1 and
h2, respectively. Since AEP and FDP are similar, as well
as EBQ and CFQ, we have

c

x
=

h1

h − h1
, and

a − c

b − x
=

h2

h − h2
.

Solving from these, we obtain

h1 =
ch

x + c
, h2 =

(a − c)h
a + b − c − x

.



40

As h1c + h2(a − c) is double the area to be minimized, we
seek the minimum of

f(x) =
c2

x + c
+

(a − c)2

2a − c − x
.

The necessary minimum condition f ′(x) = 0 means

c2

(x + c)2
=

(a − c)2

(a + b − c − x)2
.

Solving this, we obtain x =
bc

a
, and since the left hand side

of the equation has a decreasing and the right hand side an
increasing function of x in the relevant interval 0 ≤ x ≤ b,
we see that x = c is the only root of f ′)x) = 0, and we also
note that f ′(x) is increasing. So f(x) has a global minimum

at x =
bc

a
. This means that, in terms of the notation of the

first solution, F = G is the solution of the problem.
91.3. Show that

1
22

+
1
32

+ . . . +
1
n2

<
2
3

for all n ≥ 2.
Solution. Since

1
j2

<
1

j(j − 1)
=

1
j − 1

− 1
j
,

we have
n∑

j=k

1
j2

<

(
1

k − 1
− 1

k

)
+
(

1
k
− 1

k + 1

)
+· · ·+

(
1

n − 1
− 1

n

)

=
1

k − 1
− 1

n
<

1
k − 1

.
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From this we obtain for k = 6

1
22

+
1
32

+ . . . +
1
n2

<
1
4

+
1
9

+
1
16

+
1
25

+
1
5

=
2389
3600

<
2
3
.

91.4. Let f(x) be a polynomial with integer coefficients. We
assume that there exists a positive integer k and k consec-
utive integers n, n + 1, . . . , n + k − 1 so that none of the
numbers f(n), f(n + 1), . . . , f(n + k − 1) is divisible by k.
Show that the zeroes of f(x) are not integers.
Solution. Let f(x) = a0x

d+a1x
d−1+· · ·+ad. Assume that

f has a zero m which is an integer. Then f(x) = (x−m)g(x),
where g is a polynomial. If g(x) = b0x

d−1 + b1x
d−2 + · · · +

bd−1, then a0 = b0, and ak = bk − mbk−1, 1 ≤ k ≤ d − 1.
So b0 is an integer, and by induction all bk’s are integers.
Because f(j) is not divisible by k for k consequtive values of
j, no one of the k consequtive integers j − m, j = n, n + 1,
. . . , n + k − 1, is divisible by k. But this is a contradiction,
since exactly one of k consequtive integers is divisible by k.
So f cannot have an integral zero.
92.1. Determine all real numbers x > 1, y > 1, and z > 1,
satisfying the equation

x + y + z +
3

x − 1
+

3
y − 1

+
3

z − 1

= 2
(√

x + 2 +
√

y + 2 +
√

z + 2
)

.

Solution. Consider the function f ,

f(t) = t +
3

t − 1
− 2

√
t + 2,

defined for t > 1. The equation of the problem can be
written as

f(x) + f(y) + f(z) = 0.



42

We reformulate the formula for f :

f(t) =
1

t − 1
(
t2 − t + 3 − 2(t − 1)

√
t + 2

)
=

1
t − 1

(
t2 − 2t + 1 +

(√
t + 2

)2 − 2(t − 1)
√

t + 2
)

=
1

t − 1
(
t − 1 −√

t + 2
)2

.

So f(t) ≥ 0, and f(t) = 0 for t > 1 only if

t − 1 =
√

t + 2

or
t2 − 3t − 1 = 0.

The only t satisfying this condition is

t =
3 +

√
13

2
.

So the only solution to the equation in the problem is given
by

x = y = z =
3 +

√
13

2
.

92.2. Let n > 1 be an integer and let a1, a2, . . . , an be n
different integers. Show that the polynomial

f(x) = (x − a1)(x − a2) · · · (x − an) − 1

is not divisible by any polynomial with integer coefficients
and of degree greater than zero but less than n and such
that the highest power of x has coefficient 1.
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Solution. Suppose g(x) is a polynomial of degree m, where
1 ≤ m < n, with integer coefficients and leading coefficient
1, such that

f(x) = g(x)h(x),

whre h(x) is a polynomial. Let

g(x) = xm + bm−1x
m−1 + · · · + b1x + b0,

h(x) = xn−m + cn−m−1x
n−m−1 + · · · + c1x + c0.

We show that the coefficients of h(x) are integers. If they
are not, there is a greatest index j = k such that ck is not
an integer. But then the coefficient of f multiplying xk+m –
which is an integer – would be ck + bm−1ck+1 + bm−2ck+2 +
. . . bk−m. All terms except the first one in this sum are
integers, so the sum cannot be an integer. A contradiction.
So h(x) is a polynomial with integral coefficients. Now

f(ai) = g(ai)h(ai) = −1,

for i = 1, 2, . . . , n, and g(ai) and h(ai) are integers. This is
only possible, if g(ai) = −f(ai) = ±1 and g(ai) + h(ai) = 0
for i = 1, 2, . . . , n. So the polynomial g(x) + h(x) has at
least n zeroes. But the degree of g(x) + h(x) is less than
n. So g(x) = −h(x) for all x, and f(x) = −g(x)2. This
is impossible, however, because f(x) → +∞, as x → +∞.
This contradiction proves the claim.
92.3 Prove that among all triangles with inradius 1, the
equilateral one has the smallest perimeter.
Solution. (See Figure 4.) The area T , perimeter p and
inradius r satisfy 2T = rp. (Divide the triangle into three
triangles with a common vertex at the incenter of the trian-
gle.) So for a fixed inradius, the triangle with the smallest
perimeter is the one which has the smallest area. To prove
that the equilateral triangles minimize the area among tri-
angles with a fixed incircle, we utilize three trivial facts,
which the reader may prove for his/her enjoyment:
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Figure 4.

Lemma 1. If AB and CD are two equal chords of a circle
and if they intersect at P , and if D is on the shorter arc
AB, then APD and CPB are congruent triangles.

Lemma 2. If C1 and C2 concentric circles, then all chords of
C1 which are tangent to C2 are equal.

Lemma 3. Given a circle C, the set of points P such that
the tangents to C through P meet at a fixed angle, is a circle
concentric to C.

Now consider an equilateral triangle ABC with incircle C1

and circumcircle C2. Let DEF be another triangle with
incircle C1. If DEF is not equilateral, it either has two
angles < 60◦ and one angle > 60◦, two angles > 60◦ and
one angle < 60◦, or one angle < 60, one = 60◦, and one
> 60◦. In the first case, using Lemma 3 and its immediate
consequences, we may rotate the triangles and rename the
vertices so that F is inside C2 and D and E are outside it.
Let DF intersect C2 at G and H, let EF intersect C2 at
K and J (J on the shorter arc HG), and let AB and HG
intersect at P , and AC and JK at Q. Since A is on different
sides of HG and JK than B and C, respectively, A must be
on the shorter arc JG. By Lemma 1, BPH and APG are
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congruent and JQA and QCK are congruent. We compute,
denoting the area of a figure F by |F|:

|FDE| = |ABC| + |DBP | − |PFA| + |QCE| − |AFQ|
> |ABC| + |PHB| − |PFA| + |CKQ| − |AFG|

> |ABC| + |PHB| − |PGA| + |CKQ| − |QAJ | = |ABC|.

The two other cases can be treated analogously.
92.4. Peter has many squares of equal side. Some of the
squares are black, some are white. Peter wants to assemble
a big square, with side equal to n sides of the small squares,
so that the big square has no rectangle formed by the small
squares such that all the squares in the vertices of the rect-
angle are of equal colour. How big a square is Peter able to
assemble?
Solution. We show that Peter only can make a 4×4 square.
The construction is possible, if n = 4:

Now consider the case n = 5. We may assume that at
least 13 of the 25 squares are black. If five black squares
are on one horizontal row, the remaining eight ones are dis-
tributed on the other four rows. At least one row has two
black squres. A rectangle with all corners black is created.
Next assume that one row has four black squares. Of the
remaing 9 squares, at least three are one row. At least two
of these three have to be columns having the assumed four
black squares. If no row has more than four black squares,
there have to be at least three rows with exactly three black
squares. Denote these rows by A, B, and C. Let us call
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the columns in which the black squares on row A lie black
columns, and the other two columns white columns. If ei-
ther row B or row C has at least two black squares which
are on black columns, a rectancle with black corners arises.
If both rows B and C have only one black square on the
black columns, then both of them have two black squares
on the two white columns, and they make the black corners
of a rectangle. So Peter cannot make a 5 × 5 square in the
way he wishes.
93.1. Let F be an increasing real function defined for all x,
0 ≤ x ≤ 1, satisfying the conditions

(i) F
(x

3

)
=

F (x)
2

,

(ii) F (1 − x) = 1 − F (x).

Determine F

(
173
1993

)
and F

(
1
13

)
.

Solution. Condition (i) implies F (0) =
1
2
F (0), so F (0) =

0. Because of condition (ii), F (1) = 1 − F (0) = 1. Also

F

(
1
3

)
=

1
2

and F

(
2
3

)
= 1 − F

(
1
3

)
=

1
2
. Since F is an

increasing function, this is possible only if F (x) =
1
2

for all

x ∈
[
1
3
,

2
3

]
. To determine the first of the required values

of F , we use (i) and (ii) to transform the argument into the
middle third of [0, 1]:

F

(
173
1993

)
=

1
2
F

(
519
1993

)
=

1
4
F

(
1557
1993

)

=
1
4

(
1 − F

(
436
1993

))
=

1
4

(
1 − 1

2
F

(
1308
1993

))

=
1
4

(
1 − 1

4

)
=

3
16

.
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To find the second value of F , we use (i) and (ii) to form an
equation fron which the value can be solved. Indeed,

F

(
1
13

)
= 1 − F

(
12
13

)
= 1 − 2F

(
4
13

)

= 1 − 2
(

1 − F

(
9
13

))
= 2F

(
9
13

)
− 1 = 4F

(
3
13

)
− 1

= 8F

(
1
13

)
− 1.

From this we solve

F

(
1
13

)
=

1
7
.

93.2. A hexagon is inscribed in a circle of radius r. Two
of the sides of the hexagon have length 1, two have length 2
and two have length 3. Show that r satisfies the equation

2r3 − 7r − 3 = 0.

Figure 5.
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Solution. (See Figure 5.) We join the vertices of the
hexagon to the center O of its circumcircle. We denote
by α the central angles corresponding the chords of length
1, by β those corresponding the chords of length 2, and
by γ those corresponding the chords of length 3. Clearly
α + β + γ = 180◦. We can move three chords of mutually
different length so that they follow each other on the cir-
cumference. We thus obtain a quadrilateral ABCD where
AB = 2r is a diameter of the circle, BC = 1, CD = 2,
and DA = 3. Then ∠COB = α and ∠CAB =

α

2
. Then

∠ABC = 90◦ − α

2
, and, as ABCD is an inscribed quafdri-

lateral, ∠CDA = 90◦ +
α

2
. Set AC = x. From triangles

ABC and ACD we obtain x2 + 1 = 4r2 and

x2 = 4 + 9 − 2 · 2 · 3 cos
(
90◦ +

α

2

)
= 13 + 12 sin

(α

2

)
.

From triangle ABC,

sin
(α

2

)
=

1
2r

.

We put this in the expression for x2 to obtain

4r2 = x2 + 1 = 14 + 12 · 1
2r

which is equivalent to

2r3 − 7r − 3 = 0.

93.3. Find all solutions of the system of equations⎧⎪⎨
⎪⎩

s(x) + s(y) = x

x + y + s(z) = z

s(x) + s(y) + s(z) = y − 4,

where x, y, and z are positive integers, and s(x), s(y), and
s(z) are the numbers of digits in the decimal representations
of x, y, and z, respectively.
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Solution. The first equation implies x ≥ 2 and the first
and third equation together imply

s(z) = y − x − 4. (1)

So y ≥ x + 5 ≥ 7. From (1) and the second equation we
obtain z = 2y − 4. Translated to the values of s, these
equation imply s(x) ≤ s(2y) ≤ s(y)+1 and s(x) ≤ s(y). We
insert these inequalitien in the last equation of the problem
to obtain y−4 ≤ 3s(y)+1 or y ≤ 3s(y)+5. Since 10s(y)−1 ≤
y, the only possible values of s(y) are 1 and 2. If s(y) = 1,
then 7 ≤ y ≤ 3 + 5 = 8. If y = 7, x must be 2 and
z = 2 · 7 − 4 = 10. But this does not fit in the second
equation: 2 + 7 + 2 �= 10. If y = 8, then z = 12, x = 2. The
triple (2, 8, 12) satisfies all the equations of the problem. If
s(y) = 2, then y ≤ 6 + 5 = 11. The only possibilities are
y = 10 and y = 11. If y = 10, then z = 16 and x ≤ 5. The
equation s(x) + s(y) + s(z) = y − 4 = 6 is not satisfied. If
y = 11, then z = 18 and x ≤ 6. Again, the third equation
is not satisfied. So x = 2, y = 8, and z = 12 is the only
solution.
93.4. Denote by T (n) the sum of the digits of the decimal
representation of a positive integer n.
a) Find an integer N , for which T (k · N) is even for all k,
1 ≤ k ≤ 1992, but T (1993 · N) is odd.
b) Show that no positive integer N exists such that T (k ·N)
is even for all positive integers k.
Solution. a) If s has n decimal digits and m = 10n+rs+ s,
then T (km) is even at least as long as ks < 10n+r, because
all non-zero digits appear in pairs in km. Choose N =
5018300050183 or s = 50183, n = 5, r = 3. Now 1992 · s =
99964536 < 108, so T (kN) is even for all k ≤ 1992. But
1993 · s = 100014719, 1993 · N = 10001472000014719, and
T (1993 · N) = 39 is odd.
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b) Assume that N is a positive integer for which T (kN)
is even for all k. Consider the case N = 2m first. Then
T (km) = T (10km) = T (5kN). As T (5kN) is even for every
k, then so is T (km). Repeating the argument suffiently
many times we arrive at an odd N , such that T (kN) is even
for all k. Assume now N = 10r + 5. Then T (k(2r + 1)) =
T (10k(2r + 1)) = T (2kN). From this we conclude that the

number
N

5
= 2r+1 has the the property we are dealing with.

By repeating the argument, we arrive at an odd number N ,
which does not have 5 as a factor, such that T (kN) is even
for all k. Next assume N = 10r+9. If N has n digits and the
decimal representation of N is ax . . . xb9, where the x’s can
be any digits, then, if b < 9, the decimal representation of
10n−1N + N is ax . . . x(b + 1)(a − 1)x . . . xb9. This implies
T (10n−2N + N) = 2T (N) − 9, which is an odd number. If
the second last digit b of N is 9, then 11N has 89 as its
two last digits, and again we see that N has a multiple kN
with T (kn) odd. Finally, if the last digit of N is 1, the last
digit of 9N is 9, if the last digit of N is 3, the last digit
of 3N is 9, and if the last digit of N is 7, the last digit of
7N is 9. All these cases thus can be reduced to the cases
already treated. So all odd numbers have multiples with an
odd sum of digits, and the proof is complete.

94.1. Let O be an interior point in the equilateral triangle
ABC, of side length a. The lines AO, BO, and CO inter-
sect the sides of the triangle in the points A1, B1, and C1.
Show that

|OA1| + |OB1| + |OC1| < a.

Solution. Let HA, HB , and HC be the orthogonal pro-
jections of O on BC, CA, and AB, respectively. Because
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60◦ < ∠OA1B < 120◦,

|OHA| = |OA1| sin(∠OA1B) > |OA1|
√

3
2

.

In the same way,

|OHB | > |OB1|
√

3
2

and |OHC | > |OC1|
√

3
2

.

The area of ABC is a2

√
3

4
but also

a

2
(OHA +OHB +OHC)

(as the sum of the areas of the three triangles with common
vertex O which together comprise ABC). So

|OHA| + |OHB | + |OHC | = a

√
3

2
,

and the claim follows at once.
94.2. We call a finite plane set S consisting of points with
integer coefficients a two-neighbour set, if for each point
(p, q) of S exactly two of the points (p + 1, q), (p, q + 1),
(p− 1, q), (p, q− 1) belong to S. For which integers n there
exists a two-neighbour set which contains exactly n points?
Solution. The points (0, 0), (1, 0), (1, 1), (0, 1) clearly
form a two-neighbour set (which we abbreviate as 2NS).
For every even number n = 2k ≥ 8, the set S = {(0, 0),
. . . , (k − 2, 0), (k − 2, 1), (k − 2, 2), . . . , (0, 2), (0, 1)} is
a 2NS. We show that there is no 2NS with n elements for
other values n.
Assume that S is a 2NS and S has n points. We join every
point in S to two of its neighbours by a unit line segment.
The ensuing figures are closed polygonal lines, since an end-
point of such a line would have only one neighbour. The
polygons contains altogether n segments (from each point,
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two segments emanate, and counting the emanating seg-
ments means that the segments will be counted twice.) In
each of the polygons, the number of segments is even. When
walking around such a polygon one has to take equally many
steps to the left as to the right, and equally many up and
down. Also, n �= 2.
What remains is to show is that n �= 6. We may assume
(0, 0) ∈ S. For reasons of symmetry, essentially two possi-
bilities exist: a) (−1, 0) ∈ S and (1, 0) ∈ S, or b) (1, 0) ∈ S
and (0, 1) ∈ S. In case a), (0, 1) /∈ S and (0, −1) /∈ S.
Because the points (−1, 0), (0, 0), and (1, 0) of S belong to
a closed polygonal line, this line has to wind around either
(0, 1) or (0, −1). In both cases, the polygon has at least 8
segments. In case b) (1, 1) /∈ S (because otherwise S would
generate two polygons, a square an one with two segments).
Also (−1, 0) /∈ S, and (0, −1) /∈ S. The polygon which
contains (1, 0), (0, 0), and (0, 1) thus either winds around
the point (1, 1), in which case it has at least 8 segments,
or it turns around the points (−1, 0) and (0, −1), in which
case it has at least 10 segments. So n = 6 always leads to a
contradiction.
94.3. A piece of paper is the square ABCD. We fold it by
placing the vertex D on the point H of the side BC. We
assume that AD moves onto the segment GH and that HG
intersects AB at E. Prove that the perimeter of the triangle
EBH is one half of the perimeter of the square.
Solution. (See Figure 6.) The fold gives rise to an isosceles
trapezium ADHG. Because of symmetry, the distance of
the vertex D from the side GH equals the distance of the
vertex H from side AD; the latter distance is the side length
a of the square. The line GH thus is tangent to the circle
with center D and radius a. The lines AB and BC are
tangent to the same circle. If the point common to GH and
the circle is F , then AE = EF and FH = HC. This implies
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Figure 6.

AB+BC = AE+EB+BH+HC = EF +EB+BH+HF =
EH +EB +BH, which is equivalent to what we were asked
to prove.
94.4. Determine all positive integers n < 200, such that
n2 + (n + 1)2 is the square of an integer.
Solution. We determine the integral solutions of

n2 + (n + 1)2 = (n + p)2, p ≥ 2.

The root formula for quadratic equations yields

n = p − 1 +
√

2p(p − 1) ≥ 2(p − 1).

Because n < 200, we have p ≤ 100. Moreover, the number
2p(p−1) has to be the square of an integer. If p is odd, p and
2(p−1) have no common factors. Consequently, both p and
2(p − 1) have to be squares. The only possible candidates
are p = 9, p = 25, p = 49, p = 81. The respective numbers
2(p − 1) are 16, 48, 96, and 160. Of these, only 16 is a
square. We thus have one solution n = 8 +

√
2 · 9 · 8 = 20,

202+212 = 841 = 292. If p is even, the numbers 2p and p−1
have no factors in common, so both are squares. Possible
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candidates for 2p are 4, 16, 36, 64, 100, 144, and 196. The
corresponding values of p − 1 are 1, 7, 31, 49, 71, 97. We
obtain two more solutions: n = 1+2 = 3, 32 +42 = 52, and
n = 49 + 70 = 119, 1192 + 1202 = 1692.

95.1. Let AB be a diameter of a circle with centre O. We
choose a point C on the circumference of the circle such
that OC and AB are perpendicular to each other. Let P
be an arbitrary point on the (smaller) arc BC and let the
lines CP and AB meet at Q. We choose R on AP so that
RQ and AB are perpendicular to each other. Show that
|BQ| = |QR|.

Figure 7.

Solution 1. (See Figure 7.) Draw PB. By the Theorem
of Thales, ∠RPB = ∠APB = 90◦. So P and Q both lie
on the circle with diameter RB. Because ∠AOC = 90◦,
∠RPQ = ∠CPA = 45◦. Then ∠RBQ = 45◦, too, and
RBQ is an isosceles right triangle, or |BQ| = |QR|.
Solution 2. Set O = (0, 0), A = (−1, 0), B = (1, 0),
C = (0, 1), and P = (t, u), where t > 0, u > 0, and t2 +

u2 = 1. The equation of line CP is y − 1 =
u − 1

t
x. So

Q =
(

t

1 − u
, 0
)

and |BQ| =
t

1 − u
− 1 =

t + u − 1
1 − u

. On

the other hand, the equation of line AP is y =
u

t + 1
(x+1).
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The y coordinate of R and also |QR| is u

t + 1

(
t

1 − u
+ 1
)

=

ut + u − u2

(t + 1)(1− u)
=

ut + u − 1 + t2

(t + 1)(1− u)
=

u + t − 1
1 − u

. The claim

has been proved.
95.2. Messages are coded using sequences consisting of ze-
roes and ones only. Only sequences with at most two consec-
utive ones or zeroes are allowed. (For instance the sequence
011001 is allowed, but 011101 is not.) Determine the num-
ber of sequences consisting of exactly 12 numbers.
Solution 1. Let Sn be the set of acceptable sequences con-
sisting of 2n digits. We partition Sn in subsets An, Bn, Cn,
and Dn, on the basis of the two last digits of the sequence.
Sequences ending in 00 are in An, those ending in 01 are in
Bn, those ending in 10 are in Cn, and those ending in 11 are
in Dn. Denote by xn, an, bn, cn, and dn the number of ele-
ments in Sn, An, Bn, Cn, and Dn. We compute x6. Because
S1 = {00, 01, 10, 11}, x1 = 4 and a1 = b1 = c1 = d1 = 1.
Every element of An+1 can be obtained in a unique manner
from an element of Bn or Dn by adjoining 00 to the end. So
an+1 = bn+dn. The elements of Bn+1 are similarly obtained
from elements of Bn, Cn, and Dn by adjoining 01 to the end.
So bn+1 = bn + cn + dn. In a similar manner we obtain the
recursion formulas cn+1 = an + bn + cn and dn+1 = an + cn.
So an+1 + dn+1 = (bn + dn) + (an + cn) = xn and xn+1 =
2an + 3bn + 3cn + 2dn = 3xn − (an + bn) = 3xn − xn−1.
Starting from the initial values a1 = b1 = c1 = d1 = 1,
we obtain a2 = d2 = 2, b2 = c2 = 3, and x2 = 10. So
x3 = 3x2 − x1 = 3 · 10 − 4 = 26, x4 = 3 · 26 − 10 = 68,
x5 = 3 · 68 − 26 = 178, and x6 = 3 · 178 − 68 = 466.
Solution 2. We can attach a sequence of ones and twos
to each acceptable sequence by indicating the number of
consequtive equal numbers; these one’s and twos then add
up to the length of the sequence. Interchnaging all ones and
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zeros in the sequence results in another acceptabe sequence
which in turn yields the same sequence of ones and twos.
Thus any way of writing 12 as a sum of ones and twos,
in a specified order, corresponds to exactly two acceptable
sequences of lenghth 12. The number of sums with 12 ones

is one, the number of sums with one 2 and 10 ones is
(

11
10

)
etc. The number of acceptable sequences is

2 ·
6∑

k=0

(
12 − k

2k

)
= 2 · (1 +11 +45 +84 +70+21 +1) = 466.

95.3. Let n ≥ 2 and let x1, x2, . . . xn be real numbers
satisfying x1 +x2 + . . . +xn ≥ 0 and x2

1 +x2
2 + . . . +x2

n = 1.
Let M = max{x1, x2, . . . , xn}. Show that

M ≥ 1√
n(n − 1)

. (1)

When does equality hold in (1)?
Solution. Denote by I the set of indices i for which xi ≥ 0,
and by J the set of indices j for which xj < 0. Let us assume

M <
1√

n(n − 1)
. Then I �= {1, 2, . . . , n}, since otherwise

we would have |xi| = xi ≤ 1√
n(n − 1)

for every i, and

∑n
i=1 x2

i <
1

n − 1
≤ 1. So

∑
i∈I x2

i < (n−1) · 1
n(n − 1)

=
1
n

,

and
∑

i∈I xi < (n − 1)
1√

n(n − 1)
=

√
n − 1

n
. Because

0 ≤
n∑

i=1

xi =
∑
i∈I

xi −
∑
i∈J

|xi|,
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we must have
∑

i∈J |xi| ≤ ∑
i∈I xi <

√
n − 1

n
and∑

i∈J x2
i ≤ (∑i∈J |xi|

)2
<

n − 1
n

. But then

n∑
i=1

x2
i =

∑
i∈I

x2
i +

∑
i∈J

x2
i <

1
n

+
n − 1

n
= 1,

and we have a contradiction. – To see that equality M =
1√

n(n − 1)
is possible, we choose xi =

1√
n(n − 1)

, i = 1,

2, . . . , n − 1, and xn = −
√

n − 1
n

. Now

n∑
i=1

xi = (n − 1)
1√

n(n − 1)
−
√

n − 1
n

= 0

and
n∑

i=1

x2
i = (n − 1) · 1

n(n − 1)
+

n − 1
n

= 1.

We still have to show that equality can be obtained only

in this case. Assume xi =
1√

n(n − 1)
, for i = 1, . . . , p,

xi ≥ 0, for i ≤ q, and xi < 0, kun q + 1 ≤ i ≤ n. As before
we get

q∑
i=1

xi ≤ q√
n(n − 1)

,
n∑

i=q+1

|xi| ≤ q√
n(n − 1)

,

and
n∑

i=q+1

x2
i ≤ q2

n(n − 1)
,
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so
n∑

i=1

x2
i ≤ q + q2

n2 − n
.

It is easy to see that q2+q < n2+n, for n ≥ 2 and q ≤ n−2,
but (n − 1)2 + (n− 1) = n2 − n. Consequently, a necessary

condition for M =
1√

n(n − 1)
is that the sequence only has

one negative member. But if among the positive members
there is at least one smaller than M we have

n∑
i=1

<
q + q2

n(n − 1)
,

so the conditions of the problem are not satisfied. So there
is equality if and only if n − 1 of the numbers xi equal

1√
n(n − 1)

, and the last one is
1 − n√
n(n − 1)

.

95.4. Show that there exist infinitely many mutually non-
congruent triangles T , satisfying
(i) The side lengths of T are consecutive integers.
(ii) The area of T is an integer.
Solution. Let n ≥ 3, and let n − 1, n, n + 1 be the side
lengths of the triangle. The semiperimeter of the triangle

then equals on
3n

2
. By Heron’s formula, the area of the

triangle is

T =

√
3n

2
·
(

3n

2
− n + 1

)(
3n

2
− n

)(
3n

2
− n − 1

)

=
n

2

√
3
4
(n2 − 4).

If n = 4, then T = 6. So at least one triangle of the kind
required exists. We prove that we always can form new
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triangles of the required kind from ones already known to

exist. Let n be even, n ≥ 4, and let
3
4
(n2 − 4) be a square

number. Set m = n2 − 2. Then m > n, m is even, and

m2 − 4 = (m + 2)(m − 2) = n2(n2 − 4). So
3
4
(m2 − 4) =

n2 · 3
4
(n2−4) is a square number. Also, T =

m

2

√
3
4
(m2 − 4)

is an integer. The argument is complete.
96.1. Show that there exists an integer divisible by 1996
such that the sum of the its decimal digits is 1996.
Solution. The sum of the digits of 1996 is 25 and the sum of
the digits of 2·1996 = 3992 is 23. Because 1996 = 78·25+46,
the number obtained by writing 78 1996’s and two 3992
in succession satisfies the condition of the problem. – As
3 · 1996 = 5998, the sum of the digits of 5988 is 30, and
1996 = 65 · 30 + 46, the number 39923992 5988 . . .5988︸ ︷︷ ︸

65 times

also

can be be given as an answer, indeed a better one, as it is
much smaller than the first suggestion.
96.2. Determine all real numbers x, such that

xn + x−n

is an integer for all integers n.
Solution. Set fn(x) = xn + x−n. fn(0) is not defined for
any n, so we must have x �= 0. Since f0(x) = 2 for all x �= 0,
we have to find out those x �= 0 for which fn(x) is an integer
foe every n > 0. We note that

xn + x−n = (x + x−1)(xn−1 + x1−n) − (xn−2 + x2−n).

From this we obtain by induction that xn+x−n is an integer
for all n > 1 as soon as x + x−1 is an integer. So x has to
satisfy

x + x−1 = m,
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where m is an integer. The roots of this quadratic equation
are

x =
m

2
±
√

m2

4
− 1,

and they are real, if m �= −1, 0, 1.

96.3. The circle whose diameter is the altitude dropped from
the vertex A of the triangle ABC intersects the sides AB
and AC at D and E, respectively (A �= D, A �= E). Show
that the circumcentre of ABC lies on the altitude dropped
from the vertex A of the triangle ADE, or on its extension.

Figure 8.

Solution. (See Figure 8.) Let AF be the altitude of ABC.
We may assume that ∠ACB is sharp. From the right tri-
angles ACF and AFE we obtain ∠AFE = ∠ACF . ∠ADE
and ∠AFE subtend the same arc, so they are equal. Thus
∠ACB = ∠ADE, and the triangles ABC and AED are
similar. Denote by P and Q the circumcenters of ABC and
AED, respectively. Then ∠BAP = ∠EAQ. If AG is the
altitude of AED, then ∠DAG = ∠CAF . But this implies
∠BAP = ∠DAG, which means that P is on the altitude
AG.
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96.4. The real-valued function f is defined for positive in-
tegers, and the positive integer a satisfies

f(a) = f(1995), f(a+1) = f(1996), f(a+2) = f(1997)

f(n + a) =
f(n) − 1
f(n) + 1

for all positive integers n.

(i) Show that f(n + 4a) = f(n) for all positive integers n.
(ii) Determine the smallest possible a.

Solution. To prove (i), we the formula f(n+a) =
f(n) − 1
f(n) + 1

repeatedly:

f(n + 2a) = f((n + a) + a) =

f(n) − 1
f(n) + 1

− 1

f(n) − 1
f(n) + 1

+ 1
= − 1

f(n)
,

f(n + 4a) = f((n + 2a) + 2a) = − 1

− 1
f(n)

= f(n).

(ii) If a = 1, then f(1) = f(a) = f(1995) = f(3+498 ·4a) =

f(3) = f(1 + 2a) = − 1
f(1)

. This clearly is not possible,

since f(1) and
1

f(1)
have equal sign. So a �= 1.

If a = 2, we obtain f(2) = f(a) = f(1995) = f(3+249·4a) =
f(3) = f(a + 1) = f(1996) = f(4 + 249 · 4a) = f(4) =

f(2 + a) =
f(2) − 1
f(2) + 1

, or f(2)2 + f(2) = f(2) − 1. This

quadratic equation in f(2) has no real solutions. So a �= 2.
If a = 3, we try to construct f by choosing f(1), f(2), and
f(3) arbitrarily and by computing the other values of f by
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the recursion formula f(n + 3) =
f(n) − 1
f(n) + 1

. We have to

check that f defined in this way satisfies the conditions of
the problem.
The condition

f(n + a) = f(n + 3) =
f(n) − 1
f(n) + 1

is valid because of the construction. Further, by (i),

f(n + 12) = f(n + 4a) = f(n),

which implies

f(a) = f(3) = f(3 + 166 · 12) = f(1995),

f(a + 1) = f(4) = f(4 + 166 · 12) = f(1996),

f(a + 2) = f(5) = f(5 + 166 · 12) = f(1997)

as required.
We remark that the choice f(n) = −1 makes f(n+3) unde-
fined, the choice f(n) = 0 makes f(n+3) = −1 and f(n+6)
is undefined, and f(n) = 1 makes f(n + 3) = 0 so f(n + 9)
is undefined. In the choice of f(1), f(2), and f(3) we have
to avoid −1, 0, 1.
In conclusion, we see that a = 3 is the smallest possible
value for a.
97.1. Let A be a set of seven positive numbers. Determine
the maximal number of triples (x, y, z) of elements of A
satisfying x < y and x + y = z.
Solution. Let 0 < a1 < a2 < . . . < a7 be the elements
of the set A. If (ai, aj , ak) is a triple of the kind required
in the problem, then ai < aj < ai + aj = ak. There are
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at most k − 1 pairs (ai, aj) such that ai + aj = ak. The

number of pairs satisfying ai < aj is at most
⌊

k − 1
2

⌋
. The

total number of pairs is at most

7∑
k=3

⌊
k − 1

2

⌋
= 1 + 1 + 2 + 2 + 3 = 9.

The value 9 can be reached, if A = {1, 2, . . . , 7}. In
this case the triples (1, 2, 3), (1, 3, 4), (1, 4, 5), (1, 5, 6),
(1, 6, 7), (2, 3, 5), (2, 4, 6), (2, 5, 7), and (3, 4, 7) satisfy
the conditions of the problem.
97.2. Let ABCD be a convex quadrilateral. We assume
that there exists a point P inside the quadrilateral such that
the areas of the triangles ABP , BCP , CDP , and DAP
are equal. Show that at least one of the diagonals of the
quadrilateral bisects the other diagonal.

Figure 9.

Solution. (See Figure 9.) We first assume that P does not
lie on the diagonal AC and the line BP meets the diagonal
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AC at M . Let S and T be the feet of the perpendiculars
from A and C on the line BP . The triangles APB and CBP
have equal area. Thus AS = CT . If S �= T , then the right
trianges ASM and CTM are congruent, and AM = CM .
If, on the other hand, S = T , the AC⊥PB and S = M = T ,
and again AM = CM . In both cases M is the midpoint of
the diagonal AC. We prove exactly in the same way that
the line DP meets AC at the midpoint of AC, i.e. at M . So
B, M , and P , and also D, M , and P are collinear. So M is
on the line DB, which means that BD divides the diagonal
AC in two equal parts.
We then assume that P lies on the diagonal AC. Then P
is the midpoint of AC. If P is not on the diagonal BD, we
argue as before that AC divides BD in two equal parts. If
P lies also on the diagonal BD, it has to be the common
midpoint of the diagonals.
97.3. Let A, B, C, and D be four different points in the
plane. Three of the line segments AB, AC, AD, BC, BD,
and CD have length a. The other three have length b, where

b > a. Determine all possible values of the quotient
b

a
.

Solution. If the three segments of length a share a common
endpoint, say A, then the other three points are on a circle
of radius a, centered at A, and they are the vertices of an
equilateral triangle of side length b. But this means that A
is the center of the triangle BCD, and

b

a
=

b

2
3

√
3

2
b

=
√

3.

Assume then that of the segments emanating from A at
least one has lenght a and at least one has length b. We
may assume AB = a and AD = b. If only one segment of
length a would emanate from each of the four poits, then
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the number of segments of length a would be two, as every
segment is counted twice when we count the emanating seg-
ments. So we may assume that AC has length a, too. If
BC = a, then ABC would be an equilateral triangle, and
the distance of D from each of its vertices would be b. This
is not possible, since b > a. So BC = b. Of the segments
CD and BD one has length a. We may assume DC = a.
The segments DC and AB are either on one side of thye line
AC or on opposite sides of it. In the latter case, ABCD is
a parallelogram with a pair of sides of length a and a pair
of sides of length b, and its diagonals have lengths a and
b. This is not possible, due to the fact that the sum of
the squares of the diagonals of the parallelogram, a2 + b2,
would be equal to the sum of the squares of its sides, i.e.
2a2 + 2b2. This means that we may assume that BACD is
a convex quadrilateral. Let ∠ABC = α and ∠ADB = β.
From isosceles triangles we obtain for instance ∠CBD = β,
and from the triangle ABD in particular 2α+2β+β = π as
well as ∠CDA = α, ∠DCB = 1

2(π − β), ∠CAD = α. The
triangle ADC thus yields α + α + α + 1

2
(π − β) = π. From

this we solve α = 1
5π = 36◦. The sine theorem applied to

ABC gives

b

a
=

sin 108◦

sin 36◦
=

sin 72◦

sin 36◦
= 2 cos 36◦ =

√
5 + 1
2

.

(In fact, a is the side of a regular pentagon, and b is

its diagonal.) – Another way of finding the ratio
b

a
is

to consider the trapezium CDBA, with CD‖AB; if E is
the orthogonal projection of B on the segment CD, then

CE = b − 1
2
(b − a) =

1
2
(b + a). The right triangles BCE

and DCE yield CE2 = b2 −
(

b + a

2

)2

= a2 −
(

b − a

2

)2

,
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which can be written as b2−ab−a2 = 0. From this we solve
b

a
=

√
5 + 1
2

.

97.4. Let f be a function defined in the set {0, 1, 2, . . . } of
non-negative integers, satisfying f(2x) = 2f(x), f(4x+1) =
4f(x) + 3, and f(4x − 1) = 2f(2x− 1) − 1. Show that f is
an injection, i.e. if f(x) = f(y), then x = y.

Solution. If x is even, then f(x) is even, and if x is odd,
then f(x) is odd. Moreover, if x ≡ 1 mod 4, then f(x) ≡
3 mod 4, and if x ≡ 3 mod 4, then f(x) ≡ 1 mod 4.
Clearly f(0) = 0, f(1) = 3, f(2) = 6, and f(3) = 5. So
at least f restricted to the set {0, 1, 2, 3} ia an injection.
We prove that f(x) = f(y) =⇒ x = y, for x, y < k implies
f(x) = f(y) =⇒ x = y, for x, y < 2k. So assume x and y
are smaller than 2k and f(x) = f(y). If f(x) is even, then
x = 2t, y = 2u, and 2f(t) = 2f(u). As t and u are less than
k, we have t = u, and x = y. Assume f(x) ≡ 1 mod 4. Then
x ≡ 3 mod 4; x = 4u − 1, and f(x) = 2f(2u − 1) − 1. Also
y = 4t − 1 and f(y) = 2f(2t − 1) − 1. Moreover, 2u − 1 <
1
2
(4u − 1) < k and 2t − 1 < k, so 2u − 1 = 2t − 1, u = t,

and x = y. If, finally, f(x) ≡ 3 mod 4, then x = 4u + 1,
y = 4t + 1, u < k, t < k, 4f(u) + 3 = 4f(t) + 3, u = t,
and x = y. Since for all x and y there is an n such that the
larger one of the numbers x and y is < 2n · 3, the induction
argument above shows that f(x) = f(y) ⇒ x = y.

98.1. Determine all functions f defined in the set of ra-
tional numbers and taking their values in the same set such
that the equation f(x + y) + f(x− y) = 2f(x) + 2f(y) holds
for all rational numbers x and y.

Solution. Insert x = y = 0 in the equation to obtain
2f(0) = 4f(0), which implies f(0) = 0. Setting x = 0,
one obtains f(y) + f(−y) = 2f(y) of f(−y) = f(y). Then



67

assume y = nx, where n is a positive integer. We obtain

f((n + 1)x) = 2f(x) + 2f(nx) − f((n − 1)x).

In particular, f(2x) = 2f(x) + 2f(x) − f(0) = 4f(x) and
f(3x) = 2f(x)+ 2f(2x)− f(x) = 9f(x). We prove f(nx) =
n2f(x) for all positive integers n. This is true for n = 1.
Assume f(kx) = k2f(x) for k ≤ n. Then

f((n + 1)x) = 2f(x) + 2f(nx) − f((n − 1)x)
= (2 + 2n2 − (n − 1)2)f(x) = (n + 1)2f(x),

and we are done. If x = 1/q, where q is a positive integer,
f(1) = f(qx) = q2f(x). So f(1/q) = f(1)/q2. This again
implies f(p/q) = p2f(1/q) = (p/q)2f(1). We have shown
that there is a rational number a = f(1) such that f(x) =
ax2 for all positive rational numbers x. But since f is an
even function, f(x) = ax2 for all rational x. We still have
to check that for every rational a, f(x) = ax2 satisfies the
conditions of the problem. In fact, if f(x) = ax2, then
f(x+y)+f(x−y) = a(x+y)2 +a(x−y)2 = 2ax2 +2ay2 =
2f(x) + 2f(y). So the required functions are all functions
f(x) = ax2 where a is any rational number.
98.2. Let C1 and C2 be two circles intersecting at A and
B. Let S and T be the centres of C1 and C2, respectively.
Let P be a point on the segment AB such that |AP | �= |BP |
and P �= A, P �= B. We draw a line perpendicular to SP
through P and denote by C and D the points at which this
line intersects C1. We likewise draw a line perpendicular to
TP through P and denote by E and F the points at which
this line intersects C2. Show that C, D, E, and F are the
vertices of a rectangle.
Solution. (See Figure 10.) The power of the point P with
respect to the circles C1 and C2 is PA · PB = PC · PD =



68

Figure 10.

PE · PF . Since SP is perpendicular to the chord CD, P
has to be the midpoint of CD. So PC = PD. In a similar
manner, we obtain PE = PF . Alltogether PC = PD =
PE = PF =

√
PA · PB. Consequently the points C, D, E,

and F all lie on a circle withe center P , and CD and EF as
diameters. By Thales’ theorem, the angles ∠ECF , ∠CFD
etc. are right angles. So CDEF is a rectangle.

98.3. (a) For which positive numbers n does there exist a
sequence x1, x2, . . . , xn, which contains each of the numbers
1, 2, . . . , n exactly once and for which x1 + x2 + · · ·+ xk is
divisible by k for each k = 1, 2, . . . , n?

(b) Does there exist an infinite sequence x1, x2, x3, . . .,
which contains every positive integer exactly once and such
that x1 + x2 + · · · + xk is divisible by k for every positive
integer k?

Solution. (a) We assume that x1, . . . , xn is the sequence

required in the problem. Then x1+x2+· · ·+xn =
n(n + 1)

2
.

This sum should be divisible by n. If n is odd, this is possi-

ble, since
(n + 1)

2
is an integer. If, on the other hand, n =
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2m, then
n(n + 1)

2
= m(2m + 1) = 2m2 + m ≡ m mod 2m.

So even n’s are ruled out. Assume n = 2m + 1 > 1.
We require that n − 1 = 2m divides evenly the number
x1+· · ·+xn−1. Since x1+· · ·+xn−1 = (m+1)(2m+1)−xn ≡
m + 1 − xn mod 2m, and 1 ≤ xn ≤ n, we must have
xn = m + 1. We also require that n − 2 = 2m − 1 divides
evenly the number x1 + · · · + xn−2. Now x1 + · · · + xn−2 =
(m+1)(2m+1)−xn−xn−1 ≡ m+1−xn−1 mod (2m−1) and
−m ≤ m+1−xn−1 ≤ m, we have xn−1 = m+1 mod (2m−
1). If n > 3 or m ≥ 1, we must have xn−1 = m + 1 = xn,
which is not allowed. So the only possibilities are n = 1 or
n = 3. If n = 1, x1 = 1 is a possible sequence. If n = 3, we
must have x3 = 2. x1 and x2 are 1 and 3 in any order.

(b) Let x1 = 1. We define the sequence by a recursion
formula. Assume that x1, x2, . . . , xn−1 have been chosen
and that the sum of these numbers is A. Let m be the
smallest integer not yet chosen into the sequence. If xn+1 is
chosen to be m, there will be two restrictions on xn:

A + xn ≡ 0 mod n and A + xn + m ≡ 0 mod n + 1.

Since n and n + 1 are relatively prime, there exists, by the
Chinese Remainder Theorem, a y such that y ≡ −A mod n
and y ≡ −A − m mod n + 1. If one adds a suitably large
multiple of n(n + 1) to y, one obtains a number not yet in
the sequence. So the sequence always can be extended by
two numbers, and eventually every positive integer will be
included.

98.4. Let n be a positive integer. Count the number of

numbers k ∈ {0, 1, 2, . . . , n} such that
(

n

k

)
is odd. Show

that this number is a power of two, i.e. of the form 2p for
some nonnegative integer p.
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Solution. The number of odd binomial coefficients
(

n

k

)
equals the number of ones on the n:th line of the Pascal
Triangle mod 2:

1
1 1

1 0 1
1 1 1 1

1 0 0 0 1
1 1 0 0 1 1

1 0 1 0 1 0 1

(We count the lines so that the uppermost line is line 0).
We notice that line 1 has two copies of line 0, lines 2 and 3
contain two copies of lines 1 and 2, etc.

The fundamental property
(

n + 1
p

)
=
(

n

p − 1

)
+
(

n

p

)
of

the Pascal Triangle implies that if all numbers on line k are
≡ 1 mod 2, then on line k + 1 exactly the first and last
numbers are ≡ 1 mod 2. If, say on line k exactly the first
and last numbers are ≡ 1 mod 2, then the lines k, k + 1,
. . . , 2k − 1 are formed by two copies of lines 0, 1, . . . k − 1,
separated by zeroes. As line 0 has number 1 and line 1 is
formed by two ones, the lines 2 and three are formed by two
copies of lines 0 and 1, etc. By induction we infer that for
every k, the line 2k − 1 is forned of ones only – it has two
copies of line 2k−1 − 1, and the line 0 = 20 − 1 is a one. The
line 2k has ones in the end and zeroes in between. Now let
Nn be the number of ones on line n = 2k+m, m < 2k. Then
N1 = 2 and Nn = 2Nm. So Nn always is a power of two.
To be more precise, we show that Nn = 2e(n), where e(n) is
the number of ones in the binary representation of n. The
formula is true for n = 0, as N0 = 1 = 2e(0). Also, if m < 2k,
e(2k + m) = e(m) + 1. On the other hand, if n = 2k + m,
m < 2k then Nn = 2Nm = 2 · 2e(m) = 2e(m)+1 = 2e(n).
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99.1. The function f is defined for non-negative integers
and satisfies the condition

f(n) =
{

f(f(n + 11)), if n ≤ 1999
n − 5, if n > 1999.

Find all solutions of the equation f(n) = 1999.

Solution. If n ≥ 2005, then f(n) = n − 5 ≥ 2000, and
the equation f(n) = 1999 has no solutions. Let 1 ≤ k ≤ 4.
Then

2000 − k = f(2005− k) = f(f(2010− k))
= f(1999− k) = f(f(2004− k)) = f(1993− k).

Let k = 1. We obtain three solutions 1999 = f(2004) =
f(1998) = f(1992). Moreover, 1995 = f(2000) =
f(f(2005)) = f(1994) and f(1993) = f(f(2004)) =
f(1999) = f(f(2010)) = f(2005) = 2000. So we have shown
that 2000 − k = f(1999 − k), for k = 0, 1, 2, 3, 4, 5, and
2000 − k = f(1993− k) for k = 0, 1, 2, 3, 4. We now show
by downwards induction that f(6n + 1 − k) = 2000 − k for
n ≤ 333 and 0 ≤ k ≤ 5. This has already been proved for
n = 333 and n = 332. We assume that the claim is true
for n = m + 2 and n = m + 1. Then f(6m + 1 − k) =
f(f(6m + 12 − k)) = f(f(6(m + 2) + 1 − (k + 1)) =
f(2000 − k − 1) = f(1999 − k) = 2000 − k for k = 0, 1,
2, 3, 4, and f(6m + 1 − 5) = f(6m − 4) = f(f(6m + 7)) =
f(f(6(m + 1) + 1)) = f(2000) = 1995 = 2000 − 5. So the
claim is true for n = m. Summing up, 1999 = 2000 − 1 =
f(6n), if and only if n = 1, 2, . . . , 334.

99.2. Consider 7-gons inscribed in a circle such that all
sides of the 7-gon are of different length. Determine the
maximal number of 120◦ angles in this kind of a 7-gon.
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Solution. It is easy to give examples of heptagons
ABCDEFG inscribed in a circle with all sides unequal and
two angles equal to 120◦. These angles cannot lie on adja-
cent vertices of the heptagon. In fact, if ∠ABC = ∠BCD =
120◦, and arc BC equals b◦, then arcs AB and CD both are
120◦ − b◦ (compute angles in isosceles triangles with cen-
ter of the circle as the to vertex), and AB = CD, contrary
to the assumption. So if the heptagon has three angles of
120◦, their vertices are, say A, C, and E. Then each of the
arcs GAB, BCD, DEF are 360◦ − 240◦ = 120◦. The arcs
are disjoint, so they cover the whole circumference. The F
has to coincide with G, and the heptagon degenerates to a
hexagon. There can be at most two 120◦ angles.

99.3. The infinite integer plane Z × Z = Z
2 consists of all

number pairs (x, y), where x and y are integers. Let a and
b be non-negative integers. We call any move from a point
(x, y) to any of the points (x ± a, y ± b) or (x ± b, y ± a)
a (a, b)-knight move. Determine all numbers a and b, for
which it is possible to reach all points of the integer plane
from an arbitrary starting point using only (a, b)-knight
moves.

Solution. If the greatest common divisor of a and b is
d, only points whose coordinates are multiples of d can be
reached by a sequence of (a, b)-knight moves starting from
the origin. So d = 1 is a necessary condition for the possi-
bility of reaching every point in the integer plane. In any
(a, b)-knight move, x + y either stays constant or increases
or diminishes by a+ b. If a+ b is even, then all points which
can be reached from the origin have an even coordinate sum.
So a+b has to be odd. We now show that if d = 1 and a+b is
odd, then all points can be reached. We may assume a ≥ 1
and b ≥ 1, for if ab = 0, d = 1 is possible only if one of the
numbers a, b is 0 and the other one 1. In this case clearly
all points can be reached. Since d = 1, there exist positive
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numbers r and s such that either ra−sb = 1 or sb−ra = 1.
Assume ra − sb = 1. Make r moves (x, y) → (x + a, y + b)
and r moves (x, y) → (x + a, y − b) to travel from point
(x, y) to point (x + 2ra, y). After this, make s moves
(x, y) → (x − b, a) and s moves (x, y) → (x − b, −a) to
arrive at point (x + 2ra − 2sb, y) = (x + 2, y). In a similar
manner we construct sequences of moves carrying us from
point (x, y) to points (x − 2, y), (x, y + 2), and (x, y − 2).
This means that we can reach all points with both coordi-
nates even from the origin. Exactly one of the numbers a
and b is odd. We may assume a = 2k + 1, b = 2m. A move
(x, y) → (x+a, y + b) = (x+1+2k, y +2m), followed by k
sequences of moves (x, y) → (x − 2, y) and m sequences of
moves (x, y) → (x, y−2) takes us to the point (x+1, y). In
a similar manner we reach the points (x−1, y) and (x, y±1)
from (x, y). So all points can be reached from the origin. –
If sb − ra = 1, the argument is similar.
99.4. Let a1, a2, . . . , an be positive real numbers and n ≥ 1.
Show that

n

(
1
a1

+ · · · + 1
an

)

≥
(

1
1 + a1

+ · · · + 1
1 + an

)(
n +

1
a1

+ · · · + 1
an

)
.

When does equality hold?
Solution. The inequality of the problem can be written as

1
1 + a1

+ · · · + 1
1 + an

≤
n

(
1
a1

+ · · · + 1
an

)
n +

1
a1

+ · · · + 1
an

.

A small manipulation of the right hand side brings the in-
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equality to the equivalent form

1
1

a−1
1

+ 1
+ · · · + 1

1
a−1

n

+ 1
≤ n

1
a−1
1 + · · · + a−1

n

n

+ 1
. (1)

Consider the function

f(x) =
1

1
x

+ 1
=

x

1 + x
.

We see that it is concave, i.e.

tf(x) + (1 − t)f(y) < f(tx + (1 − t)y)

for all t ∈ (0, 1). In fact, the inequality

t
x

1 + x
+ (1 − t)

y

1 + y
<

tx + (1 − t)y
1 + tx + (1 − t)y

can be written as

t2(x − y)2 < t(x − y)2,

and because 0 < t < 1, it is true. [Another standard way to
see this is to compute

f ′(x) =
1

(1 + x)2
, f ′′(x) = − 2

(1 + x)3
< 0.

A function with a positive second derivative is concave.] For
any concave function f , the inequality

1
n

(f(x1) + f(x2) + · · · + f(xn)) ≤ f

(
x1 + · · · + xn

n

)
holds, with equality only for x1 = x2 = . . . = xn. So (1) is
true, and equality holds only if all ai’s are equal.
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00.1. In how many ways can the number 2000 be written
as a sum of three positive, not necessarily different integers?
(Sums like 1 + 2 + 3 and 3 + 1 + 2 etc. are the same.)

Solution. Since 3 is not a factor of 2000, there has to be
at least two different numbers among any three summing
up to 2000. Denote by x the number of such sums with
three different summands and by y the number of sums with
two different summands. Consider 3999 boxes consequtively
numbered fron 1 to 3999 such that all boxes labelled by an
odd number contain a red ball. Every way to put two blue
balls in the even-numbered boxes produces a partition of

2000 in three summands. There are
(

1999
2

)
= 999 · 1999

ways to place the blue balls. But htere are 3! = 6 different
placements, which produce the same partition of 2000 into

three different summands, and
3!
2

= 3 different placements,
which produce the same partition of 2000 into summands
two which are equal. Thus 6x+3y = 1999·999. But y = 999,
because the number appering twice in the partition can be
any of the numbers 1, 2, . . . , 999. This leads to x = 998·333,
so x + y = 1001 · 333 = 333333.

00.2. The persons P1, P1, . . . , Pn−1, Pn sit around a table,
in this order, and each one of them has a number of coins.
In the start, P1 has one coin more than P2, P2 has one
coin more than P3, etc., up to Pn−1 who has one coin more
than Pn. Now P1 gives one coin to P2, who in turn gives
two coins to P3 etc., up to Pn who gives n coins to P1.
Now the process continues in the same way: P1 gives n + 1
coins to P2, P2 gives n + 2 coins to P3; in this way the
transactions go on until someone has not enough coins, i.e.
a person no more can give away one coin more than he just
received. At the moment when the process comes to an end
in this manner, it turns out that there are to neighbours at
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the table such that one of them has exactly five times as
many coins as the other. Determine the number of persons
and the number of coins circulating around the table.
Solution. Assume that Pn has m coins in the start. Then
Pn−1 has m + 1 coins, . . . and P1 has m + n − 1 coins. In
every move a player receives k coins and gives k + 1 coins
away, so her net loss is one coin. After the first round, when
Pn has given n coins to P1, Pn has m − 1 coins, Pn−1 has
m coins etc., after two rounds Pn has m−2 coins, Pn−1 has
m−1 coins etc. This can go on during m rounds, after which
Pn has no money, Pn−1 has one coin etc. On round m + 1
each player still in possession of money can receive and give
away coins as before. The penniless Pn can no more give
away coins according to the rule. She receives n(m + 1)− 1
coins from Pn−1, but is unable to give n(m + 1) coins to
P1. So when the game ends, Pn−1 has no coins and P1 has
n−2 coins. The only pair of neighbours such that one has 5
times as many coins as the other can be (P1, Pn). Because
n−2 < n(m+1)−1, this would mean 5(n−2) = n(m+1)−1
or n(4 − m) = 9. Since n > 1, the possibilities are n = 3,
m = 1 or n = 9, m = 3. Both are indeed possible. In the
first case the number of coins is 3 +2 +1 = 6, in the second
11 + 10 + · · · + 3 = 63.
00.3. In the triangle ABC, the bisector of angle B meets
AC at D and the bisector of angle C meets AB at E. The
bisectors meet each other at O. Furthermore, OD = OE.
Prove that either ABC is isosceles or ∠BAC = 60◦.
Solution. (See Figure 11.) Consider the triangles AOE and
AOD. They have two equal pairs of sides and the angles
facing one of these pairs are equal. Then either AOE and
AOD are congruent or ∠AEO = 180◦−∠ADO. In the first
case, ∠BEO = ∠CDO, and the triangles EBO and DCO
are congruent. Then AB = AC, and ABC is isosceles.
In the second case, denote the angles of ABC by 2α, 2β,
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Figure 11.

and 2γ, and the angle AEO by δ. By the theorem on the
adjacent angle of an angle of a triangle, ∠BOE = ∠DOC =
β + γ, δ = 2β + γ, and 180◦ − δ = β + 2γ. Adding these
equations yields 3(β+γ) = 180◦ eli β+γ = 60◦. Combining
this with 2(α + β + γ) = 180◦, we obtain 2α = 60◦.
00.4. The real-valued function f is defined for 0 ≤ x ≤ 1,
f(0) = 0, f(1) = 1, and

1
2
≤ f(z) − f(y)

f(y) − f(x)
≤ 2

for all 0 ≤ x < y < z ≤ 1 with z − y = y − x. Prove that

1
7
≤ f

(
1
3

)
≤ 4

7
.

Solution. We set f

(
1
3

)
= a and f

(
2
3

)
= b. Applying

the inequality of the problem for x =
1
3
, y =

2
3

and z = 1,

as well as for x = 0, y =
1
3
, and z =

2
3
, we obtain

1
2
≤ 1 − b

b − a
≤ 2,

1
2
≤ b − a

a
≤ 2
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If a < 0, we would have b − a < 0 and b < 0. In addition,
we would have 1 − b < 0 or b > 1. A similar contradiction
would be implied by the assumption b − a < 0. So a > 0
and b − a > 0, so

1
3

(
2
3
a +

1
3

)
≤ a ≤ 2

3

(
1
3
a +

2
3

)

or a ≤ 2b−2a, b−a ≤ 2a, b−a ≤ 2−2b, and 1−b ≤ 2b−2a.
Of these inequalities the first and third imply 3a ≤ 2b and

3b ≤ 2 + a. Eliminate b to obtain 3a ≤ 4
3

+
2a

3
, a ≤ 4

7
. In

a corresponding manner, the second and fourth inequality

imply 1 + 2a ≤ 3b and b ≤ 3a, from which 1 ≤ 7a or
1
7
≤ a

follows. [The bounds can be improved. In fact the sharp

lower and upper bounds for a are known to be
4
27

and
76
135

.]

01.1. Let A be a finite collection of squares in the coordinate
plane such that the vertices of all squares that belong to A
are (m, n), (m+1, n), (m, n+1), and (m+1, n+1) for some
integers m and n. Show that there exists a subcollection B
of A such that B contains at least 25 % of the squares in A,
but no two of the squares in B have a common vertex.

Solution. Divide the plane into two sets by painting the
strips of squares parallel to the y axis alternately red and
green. Denote the sets of red and green squares by R and G,
respectively. Of the sets A∩R and A∩G at least one contains
at least one half of the squares in A. Denote this set by A1.
Next partition the strips of squares which contain squares
of A1 into two sets E and F so that each set contains every
second square of A1 on each strip. Now neither of the dets
E and F has a common point with a square in the same set.
On the other hand, at least one of the sets E ∩ A1, F ∩ A1

contains at least one half of the squares in A1 and thus at
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least one quarter of the sets in A. This set is good for the
required set B.

01.2. Let f be a bounded real function defined for all real
numbers and satisfying for all real numbers x the condition

f

(
x +

1
3

)
+ f

(
x +

1
2

)
= f(x) + f

(
x +

5
6

)
.

Show that f is periodic. (A function f is bounded, if there
exists a number L such that |f(x)| < L for all real numbers
x. A function f is periodic, if there exists a positive number
k such that f(x + k) = f(x) for all real numbers x.)

Solution. Let g(6x) = f(x). Then g is bounded, and

g(t + 2) = f

(
t

6
+

1
3

)
, g(t + 3) = f

(
t

6
+

1
2

)
,

g(t+5) = f

(
t

6
+

5
6

)
, g(t+2)+g(t+3) = g(t)+g(t+5),

g(t + 5) − g(t + 3) = g(t + 2) − g(t)

for all real numbers t. But then

g(t + 12) − g(6)
= g(t+12)−g(t+10)+g(t+10)−g(t+8)+g(t+8)−g(t+6)
= g(t+9)− g(t+7)+ g(t+7)− g(t+5)+ g(t+5)− g(t+3)
= g(t + 6) − g(t + 4) + g(t + 4) − g(t + 2) + g(t + 2) − g(t)

= g(t + 6) − g(t).

By induction, then g(t + 6n)− g(t) = n(g(t + 6)− g(0)) for
all positive integers n. Unless g(t+ 6)− g(t) = 0 for all real
t, g cannot be bounded. So g has to be periodic with 6 as a
period, whence f is periodic, with 1 as a period.
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Figure 12.

01.3. Determine the number of real roots of the equation

x8 − x7 + 2x6 − 2x5 + 3x4 − 3x3 + 4x2 − 4x +
5
2

= 0.

Solution. Write

x8 − x7 + 2x6 − 2x5 + 3x4 − 3x3 + 4x2 − 4x +
5
2

= x(x − 1)(x6 + 2x4 + 3x2 + 4) +
5
2
.

If x(x−1) ≥ 0, i.e. x ≤ 0 or x ≥ 1, the equation has no roots.

If 0 < x < 1, then 0 > x(x− 1) =
(

x − 1
2

)2

− 1
4
≥ −1

4
and

x6 +2x4 +3x+4 < 1+2+3+4 = 10. The value of the left-
hand side of the equation now is larger than −1

4
·10+

5
2

= 0.

The equation has no roots in the interval (0, 1) either.
01.4. Let ABCDEF be a convex hexagon, in which each of
the diagonals AD, BE, and CF divides the hexagon in two
quadrilaterals of equal area. Show that AD, BE, and CF
are concurrent.
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Solution. (See Figure 12.) Denote the area of a figure
by | · |. Let AD and BE intersect at P , AD and CF at
Q, and BE and CF at R. Assume that P , Q, and R are
different. We may assume that P lies between B and R,
and Q lies between C and R. Both |ABP | and |DEP | differ

from
1
2
|ABCDEF | by |BCDP |. Thus ABP and DEP have

equal area. Since ∠APB = ∠DPE, we have AP · BP =
DP · EP = (DQ + QP )(ER + RP ). Likewise CQ · DQ =
(AP+PQ)(FR+RQ) and ER·FR = (CQ+QR)(BP+PR).
When we multiply the three previous equalities, we obtain
AP · BP · CQ · DQ · ER · FR = DQ · ER · AP · FR · CQ ·
BP+ positive terms containing PQ, QR, and PR. This is
a contradiction. So P , Q and R must coincide.
02.1. The trapezium ABCD, where AB and CD are paral-
lel and AD < CD, is inscribed in the circle c. Let DP be a
chord of the circle, parallel to AC. Assume that the tangent
to c at D meets the line AB at E and that PB and DC
meet at Q. Show that EQ = AC.

Figure 13.

Solution. (See Figure 13.) since AD < CD, ∠PDC =
∠DCA < ∠DAC. This implies that arc CP is smaller
than arc CD, and P lies on that arc CD which does not
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include A and B. We show that the triangles ADE and
CBQ are congruent. As a trapezium inscribed in a circle,
ABCD is isosceles (because AB‖CD, ∠BAC = ∠DCA,
hence BC = AD). Because DP‖AC, ∠PDC = ∠CAB.
But ∠EDA = ∠CAB (angles subtending equal arcs) and
∠PBC = ∠PDC (by the same argument). So ∠EDA =
∠QBC. Because ABCD is an inscribed quadrilateral,
∠EAD = 180◦ − ∠DAB = ∠DCB. So ∠EAD = ∠QCB.
The triangles ADE and CBQ are congruent (asa). But
then EA = QC. As, in addition, EA‖QC, EACQ is a
parallelogram. And so AC = EQ, as opposite sides of a
parallelogram.
02.2. In two bowls there are in total N balls, numbered
from 1 to N . One ball is moved from one of the bowls to the
other. The average of the numbers in the bowls is increased
in both of the bowls by the same amount, x. Determine the
largest possible value of x.
Solution. Consider the situation before the ball is moved
from urn one to urn two. Let the number of balls in urn one
be n, and let the sum of numbers in the balls in that urn
be a. The number of balls in urn two is m and the sum of
numbers b. If q is the number written in the ball which was
moved, the conditions of the problem imply⎧⎪⎨

⎪⎩
a − q

n − 1
=

a

n
+ x,

b + q

m + 1
=

b

m
+ x

or {
a = nq + n(n − 1)x
b = mq − m(m + 1)x.

Because n + m = N and a + b =
1
2
N(N + 1), we obtain

1
2
N(N +1) = Nq +x(n2 −m2 −N) = Nq +xN(n−m− 1)
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and q = 1
2
(N + 1) − x(n − m − 1), b =

1
2
m(N + 1) − xmn.

But b ≥ 1 + 2 + · · ·+ m =
1
2
m(m + 1). So

1
2
(N + 1)− xn =

1
2
(m+n+1)−xn ≥ 1

2
(m+1) or

n

2
−xn ≥ 0. Hence x ≤ 1

2
.

The inequality is sharp or x =
1
2
, when the nubers in the

balls in urn one are m + 1, m + 2, . . . , N , the numbers in
urn two are 1, 2, . . . , m, and q = m + 1.

02.3. Let a1, a2, . . . , an, and b1, b2, . . . , bn be real numbers,
and let a1, a2, . . . , an be all different.. Show that if all the
products

(ai + b1)(ai + b2) · · · (ai + bn),

i = 1, 2, . . . , n, are equal, then the products

(a1 + bj)(a2 + bj) · · · (an + bj),

j = 1, 2, . . . , n, are equal, too.

Solution. Let P (x) = (x + b1)(x + b2) · · · (x + bn). Let
P (a1) = P (a2) = . . . = P (an) = d. Thus a1, a2, . . . ,
an are the roots of the n:th degree polynomial equation
P (x)−d = 0. Then P (x)−d = c(x−a1)(x−a2) · · · (x−an).
Clearly the n:th degree terms of P (x) and P (x)−d are equal.
So c = 1. But P (−bj) = 0 for each bj . Thus for every j,

−d = (−bj − a1)(−bj − a2) · · · (−bj − an)
= (−1)n(a1 + bj)(a2 + bj) · · · (an + bj),

and the claim follows.
02.4. Eva, Per and Anna play with their pocket calcula-
tors. They choose different integers and check, whether or
not they are divisible by 11. They only look at nine-digit
numbers consisting of all the digits 1, 2, . . . , 9. Anna claims
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that the probability of such a number to be a multiple of 11
is exactly 1/11. Eva has a different opinion: she thinks the
probability is less than 1/11. Per thinks the probability is
more than 1/11. Who is correct?
Solution. We write the numbers in consideration, n =
a0 + 10a1 + 102a2 + · · · + 108a8, in the form

a0 + (11 − 1)a1 + (99 + 1)a2 + (1001 − 1)a3

+(9999 + 1)a4 + (100001− 1)a5 + (999999 + 1)a6

+(10000001− 1)a7 + (99999999 + 1)a8

= (a0 − a1 + a2 − a3 + a4 − a5 + a6 − a7 + a8) + 11k

= (a0 + a1 + · · · + a8) − 2(a1 + a3 + a5 + a7) + 11k

= 44 + 1 + 11k − 2(a1 + a3 + a5 + a7).

So n is divisible by 11 if and only if 2(a1 + a3 + a5 + a7)− 1
is divisible by 11. Let s = a1 + a3 + a5 + a7. Then
1+2+3+4 = 10 ≤ s ≤ 6+7+8+9 = 30 and 19 ≤ 2s−1 ≤ 59.
The only multiples of 11 in the desired interval are 33 and
55, so s = 17 or s = 28. If s = 17, the smallest number in
the set A = {a1, a3, a5, a7} is either 1 or 2 (3 + 4 + 5 + 6 =
18). Checking the cases, we see that there are 9 possible
sets A: {2, 4, 5, 6}, {2, 3, 5, 7}, {2, 3, 4, 8}, {1, 4, 5, 7},
{1, 3, 6, 7}, {1, 3, 5, 8}, {1, 3, 4, 9}, {1, 2, 6, 8}, and
{1, 2, 5, 9}. If s = 28, the largest number in A is 9
(5+6+7+8 = 26) and the second largest 8 (5+6+7+9 = 27).
The only possible A’s are {4, 7, 8, 9} and {5, 6, 8, 9}. The

number of different ways to choose the set A is
(

9
4

)
=

9 · 8 · 7 · 6
2 · 3 · 4 = 126. Of these, the number of choices leading

to a number which is a multiple of 11 is 9 + 2 = 11. This
means that the probability of picking a number which is

divisible by 11 is
11
126

<
11
121

=
1
11

. So Eva’s opinion is
correct.
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03.1. Stones are placed on the squares of a chessboard
having 10 rows and 14 columns. There is an odd number
of stones on each row and each column. The squares are
coloured black and white in the usual fashion. Show that the
number of stones on black squares is even. Note that there
can be more than one stone on a square.

Solution. Changing the order of rows or columns does not
influence the number of stones on a row, on a column or on
black squares. Thus we can order the rows and columns in
such a way that the 5 × 7 rectangles in the upper left and
lower right corner are black and the other two 5 × 7 rect-
angles are white. If the number of stones on black squares
would be odd, then one of the black rectangles would have
an odd number of stones while the number of stones on the
other would be even. Since the number of stones is even,
one of the white rectangles would have an odd number of
stones and the other an even number. But this would imply
either a set of five rows or a set of seven columns with an
even number of stones. But this is not possible, because
every row and column has an odd number of stones. So the
number of stones on black squares has to be even.

03.2. Find all triples of integers (x, y, z) satisfying

x3 + y3 + z3 − 3xyz = 2003.

Solution. It is a well-known fact (which can be rediscovered
e.g. by noticing that the left hand side is a polynomial in x
having −(y + z) as a zero) that

x3 +y3 +z3−3xyz = (x+y+z)(x2 +y2 +z2−xy−yz−zx)

= (x + y + z)
(x − y)2 + (y − z)2 + (z − x)2

2
.
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The second factor in the right hand side is non-negative. It
is not hard to see that 2003 is a prime. So the solutions of
the equation either satisfy{

x + y + z = 1

(x − y)2 + (y − z)2 + (z − x)2 = 4006

or {
x + y + z = 2003

(x − y)2 + (y − z)2 + (z − x)2 = 2

Square numbers are ≡ 0 or ≡ 1 mod 3. So in the first case,
exactly two of the squares (x − y)2, (y − z)2, and (z − x)2

are multiples of 3. Clearly this is not possible. So we must
have x+y + z = 2003 and (x−y)2 +(y− z)2 +(z−x)2 = 2.
This is possible if and only if one of the squares is 0 and
two are 1’s. So two of x, y, z have to be equal and the
third must differ by 1 of these. This means that two of the
numbers have to be 668 and one 667. A substitution to the
original equation shows that this necessary condition is also
sufficient.
03.3. The point D inside the equilateral triangle �ABC
satisfies ∠ADC = 150◦. Prove that a triangle with side
lengths |AD|, |BD|, |CD| is necessarily a right-angled tri-
angle.
Solution. (See Figure 14.) We rotate the figure coun-
terclockwise 60◦ around C. Because ABC is an equilat-
eral triangle, ∠BAC = 60◦, so A is mapped on B. As-
sume D maps to E. The properties of rotation imply
AD = BE and ∠BEC = 150◦. Because the triangle DEC
is equilateral, DE = DC and ∠DEC = 60◦. But then
∠DEB = 150◦−60◦ = 90◦. So segments having the lengths
as specified in the problem indeed are sides of a right trian-
gle.
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Figure 14.

03.4. Let R
∗ = R \ {0} be the set of non-zero real numbers.

Find all functions f : R
∗ → R

∗ satisfying

f(x) + f(y) = f(xy f(x + y)),

for x, y ∈ R
∗ and x + y �= 0.

Solution. If x �= y, then

f(y) + f(x− y) = f(y(x− y)f(x)).

Because f(y) �= 0, we cannot have f(x−y) = f(y(x−y)f(x))
or x − y = y(x − y)f(x). So for all x �= y, yf(x) �= 1. The

only remaining possibility is f(x) =
1
x

. – One easily checks

that f , f(x) =
1
x

, indeed satisfies the original functional
equation.
04.1. 27 balls, labelled by numbers from 1 to 27, are in a
red, blue or yellow bowl. Find the possible numbers of balls
in the red bowl, if the averages of the labels in the red, blue,
and yellow bowl are 15, 3 ja 18, respectively.
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Solution. Let R, B, and Y , respectively, be the numbers
of balls in the red, blue, and yellow bowl. The mean value
condition implies B ≤ 5 (there are at most two balls with
a number < 3, so there can be at most two balls with a
number > 3). R, B and Y satisfy the equations

R + B + Y = 27

15R + 3S + 18Y =
27∑

j=1

j = 14 · 27 = 378.

We eliminate S to obtain 4R + 5Y = 99. By checking
the possibilities we note that the pairs of positive integers
satisfying the last equation are (R, Y ) = (21, 3), (16, 7),
(11, 11), (6, 15), and (1, 19). The last two, however, do not
satisfy B = 27−(R+Y ) ≤ 5. We still have to ascertain that
the three first alternatives are possible. In the case R = 21
we can choose the balls 5, 6, . . . , 25, in the red bowl, and 2,
3 and 4 in the blue bowl; if P = 16, 7, 8, . . . , 14, 16, 17, . . . ,
23, can go to the red bowl and 1, 2, 4 and 5 in the blue one,
and if P = 11, the red bowl can have balls 10, 11, . . . 20,
and the blue one 1, 2, 3, 4, 5. The red bowl can contain 21,
16 or 11 balls.

04.2. Let f1 = 0, f2 = 1, and fn+2 = fn+1 + fn, for
n = 1, 2, . . ., be the Fibonacci sequence. Show that there
exists a strictly increasing infinite arithmetic sequence none
of whose numbers belongs to the Fibonacci sequence. [A
sequence is arithmetic, if the difference of any of its consec-
utive terms is a constant.]

Solution. The Fibonacci sequence modulo any integer n >
1 is periodic. (Pairs of residues are a finite set, so some
pair appears twice in the sequence, and the sequence from
the second appearance of the pair onwards is a copy of the
sequence from the first pair onwards.) There are integers
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for which the Fibonacci residue sequence does not contain
all possible residues. For instance modulo 11 the sequence
is 0, 1, 1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, . . . Wee see that the
number 4 is missing. It follows that no integer of the form
4 + 11k appears in the Fibonacci sequence. But here we
have an arithmetic sequence of the kind required.
04.3. Let x11, x21, . . . , xn1, n > 2, be a sequence of inte-
gers. We assume that all of the numbers xi1 are not equal.
Assuming that the numbers x1k, x2k, . . . , xnk have been
defined, we set

xi,k+1 =
1
2
(xik + xi+1,k), i = 1, 2, . . . , n − 1,

xn,k+1 =
1
2
(xnk + x1k).

Show that for n odd, xjk is not an integer for some j, k.
Does the same conclusion hold for n even?
Solution. We compute the first index modulo n, i.e.
x1k = xn+1,k. Let Mk = maxj xjk and mk = minj xjk. Ev-
idently (Mk) is a non-increasing and (mk) a non-decreasing
sequence, and Mk+1 = Mk is possible only if xjk = xj+1,k =
Mk for some j. If exactly p consequtive numbers xjk equal
Mk, then exactly p − 1 consequtive numbers xj,k+1 equal
Mk+1 which is equal to Mk. So after a finite number of steps
we arrive at the situation Mk+1 < Mk. In a corresponding
manner we see that mk+1 > mk for some k’s. If all the num-
bers in all the sequences are integers, then all mk’s and Mk’s
are integers. So after a finite number of steps mk = Mk,
and all numbers xjk are equal. Then x1,k−1 + x2,k−1 =
x2,k−1+x3,k−1 = · · · = xn−1,k−1+xn,k−1 = xn,k−1+x1,k−1.
If n is odd, then x1,k−1 = x3,k−1 = · · · = xn,k−1 and
x1,k−1 = xn−1,k−1 = · · · = x2,k−1. But then we could
show in a similar way that all numbers xj,k−2 are equal
and finally that all numbers xj,1 are equal, contrary to
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the assumption. If n is even, then all xi,k’s can be inte-
gers. Take, for instance, x1,1 = x3,1 = · · · = xn−1,1 = 0,
x2,1 = x4,1 = · · · = xn,1 = 2. Then every xj,k = 1, k ≥ 2.
04.4. Let a, b, and c be the side lengths of a triangle and
let R be its circumradius. Show that

1
ab

+
1
bc

+
1
ca

≥ 1
R2

.

Solution 1. By the well-known (Euler) theorem, the inra-
dius r and circumradius R of any triangle satisfy 2r ≤ R.
(In fact, R(R − 2r) = d2, where d is the distance between
the incenter and circumcenter.) The area S of a triangle
can be written as

A =
r

2
(a + b + c),

and, by the sine theorem, as

A =
1
2
ab sin γ =

1
4

abc

R
.

Combining these, we obtain

1
ab

+
1
bc

+
1
ca

=
a + b + c

abc
=

2A

r
· 1
4RA

=
1

2rR
≥ 1

R2
.

Solution 2. Assume a ≤ b ≤ c. Then b = a + x and
c = a + x + y, x ≥ 0, y ≥ 0. Now abc − (a + b − c)(a − b +
c)(−a+b+c) = a(a+x)(a+x+y)−(a−y)(a+2x+y)(a+y) =
ax2 + axy + ay2 + 2xy2 + y3 ≥ 0. So abc(a + b + c) ≥
(a + b + c)(a + b − c)(a− b + c)(−a + b + c) = 16A2, where
the last inequality is implied by Heron’s formula. When

we substitute A =
abc

4R
(see Solution 1) we obtain, after

simplification,

a + b + c ≥ abc

R2
,

which is equivalent to the claim.
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05.1. Find all positive integers k such that the product of
the digits of k, in the decimal system, equals

25
8

k − 211.

Solution. Let

a =
n∑

k=0

ak10k, 0 ≤ ak ≤ 9, for 0 ≤ k ≤ n−1, 1 ≤ an ≤ 9.

Set

f(a) =
n∏

k=0

ak.

Since

f(a) =
25
8

a − 211 ≥ 0,

a ≥ 8
25

· 211 =
1688
25

> 66. Also, f(a) is an integer, and

gcf(8, 25) = 1, so 8 | a. On the other hand,

f(a) ≤ 9n−1an ≤ 10nan ≤ a.

So
25
8

a − 211 ≤ a

or a ≤ 8
17

· 211 =
1688
17

< 100. The only multiples of 8
between 66 and 100 are 72, 80, 88, and 96. Now 25·9−211 =
17 = 7 ·2, 25 ·10−211 = 39 �= 8 ·0, 25 ·11−211 = 64 = 8 ·8,
and 25 ·12−211 = 89 �= 9 ·6. So 72 and 88 are the numbers
asked for.
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05.2. Let a, b, and c be positive real numbers. Prove that

2a2

b + c
+

2b2

c + a
+

2c2

a + b
≥ a + b + c.

Solution 1. Use brute force. Removing the denomina-
tors and brackets and combining simililar terms yields the
equivalent inequality

0 ≤ 2a4 + 2b4 + 2c4 + a3b + a3c + ab3 + b3c + ac3 + bc3

−2a2b2 − 2b2c2 − 2a2c2 − 2abc2 − 2ab2c − 2a2bc

= a4 + b4 − 2a2b2 + b4 + c4 − 2b2c2 + c4 + a4 − 2a2c2

+ab(a2 + b2 − 2c2) + bc(b2 + c2 − 2a2) + ca(c2 + a2 − 2b2)
= (a2 − b2)2 + (b2 − c2)2 + (c2 − a2)2

+ab(a − b)2 + bc(b − c)2 + ca(c − a)2

+ab(2ab − 2c2) + bc(2bc − 2a2) + ca(2ca− 2b2).

The six first terms on the right hand side are non-negative
and the last three can be written as

2a2b2 − 2abc2 + 2b2c2 − 2a2bc + 2c2a2 − 2ab2c

= a2(b2 + c2 − 2bc) + b2(a2 + c2 − 2ac) + c2(a2 + b2 − 2ab)
= a2(b − c)2 + b2(c − a)2 + c2(a − b)2 ≥ 0.

So the original inequality is true.
Solution 2. The inequality is equivalent to

2
(
a2(a + b)(a + c) + b2(b + c)(b + a) + c2(c + a)(c + b)

)
≥ (a + b + c)(a + b)(b + c)(c + a).

The left hand side can be factored as 2(a + b + c)(a3 + b3 +
c3 + abc). Because a + b + c is positive, the inequality is
equivalent to

2(a3 + b3 + c3 + abc) ≥ (a + b)(b + c)(c + a).
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After expanding the right hand side and subtracting 2abc,
we get the inequality

2(a3 + b3 + c3) ≥ (a2b + b2c + c2a) + (a2c + b2a + c2b),

still equivalent to the original one. But we now have two
instances of the well-known inequality x3 + y3 + z3 ≥ x2y +
y2z + z2x or x2(x− y) + y2(y − z) + z2(z − x) ≥ 0. [Proof:
We may assume x ≥ y, x ≥ z. If y ≥ z, write z − x =
z − y + y − z to obtain the equivalent and true inequality
(y2−z2)(y−z)+(x2−z2)(x−y) ≥ 0, if z ≥ y, similarly write
x−y = x−z+z−y, and get (x2−z2)(x−z)+(x2−y2)(z−y) ≥
0.]
Solution 3. The original inequality is symmetric in a, b, c.
So we may assume a ≥ b ≥ c, which implies

1
b + c

≥ 1
c + a

≥ 1
a + b

.

The power mean inequality gives

a2 + b2 + c2

3
≥
(

a + b + c

3

)2

.

We combine this and the Chebyshev inequality to obtain

2a2

b + c
+

2b2

c + a
+

2c2

a + b

≥ 2
3
(a2 + b2 + c2)

(
1

b + c
+

1
c + a

+
1

a + b

)

≥ 2
9
(a + b + c)2

(
1

b + c
+

1
c + a

+
1

a + b

)
.

To complete the proof, we have to show that

2(a + b + c)
(

1
b + c

+
1

c + a
+

1
a + b

)
≥ 9.
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But this is equivalent to the harmonic–arithmetic mean in-
equality

3
1
x

+
1
y

+
1
z

≤ x + y + z

3
,

with x = a + b, y = b + c, z = c + a.

05.3 There are 2005 young people sitting around a (large!)
round table. Of these at most 668 are boys. We say that a
girl G is in a strong position, if, counting from G to either
direction at any length, the number of girls is always strictly
larger than the number of boys. (G herself is included in the
count.) Prove that in any arrangement, there always is a
girl in a strong position.

Solution. Assume the number of girls to be g and the
number of boys b. Call a position clockwise fairly strong, if,
counting clockwise, the number of girls always exceeds the
number of boys. No girl immediately followed by a boy has
a fairly strong position. But no pair consisting of a girl and
a boy following her has any effect on the fairly strongness
of the other positions. So we may remove all such pairs. so
we are left with at least g − b girls, all in a clockwise fairly
strong position. A similar count of counterclockwise fairly
strong positions can be given, yielding at least g − b girls in
such a position. Now a sufficient condition for the existence
of a girl in a strong position is that the sets consisting of the
girls in clockwise and counterclockwise fairly strong position
is nonempty. This is certainly true if 2(g−b) > g, or g > 2b.
With the numbers in the problem, this is true.

05.4. The circle C1 is inside the circle C2, and the circles
touch each other at A. A line through A intersects C1 also
at B and C2 also at C. The tangent to C1 at B intersects
C2 at D and E. The tangents of C1 passing through C touch
C1 at F and G. Prove that D, E, F , and G are concyclic.
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Figure 15.

Solution. (See Figure 15.) Draw the tangent CH to C2

at C. By the theorem of the angle between a tangent and
chord, the angles ABH and ACH both equal the angle at
A between BA and the common tangent of the circles at A.
But this means that the angles ABH and ACH are equal,
and CH‖BE. So C is the midpoint of the arc DE. This
again implies the equality of the angles CEB and BAE, as
well as CE = CD. So the triangles AEC, CEB, having
also a common angle ECB, are similar. So

CB

CE
=

CE

AC
,

and CB · AC = CE2 = CD2. But by the power of a point
theorem, CB · CA = CG2 = CF 2. We have in fact proved
CD = CE = CF = CG, so the four points are indeed
concyclic.

06.1 Let B and C be points on two fixed rays emanating
from a point A such that AB + AC is constant. Prove that
there exists a point D �= A such that the circumcircles of
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Figure 16.

the triangels ABC pass through D for every choice of B
and C.

Solution. (See Figure 16.) Let E and F be the points on
rays AB and AC, respectively, such that AE = AF = AB+
AC. Let the perpendicular bisectors of the segments AE
and AF intersect at D. It is easy to see, for instance from
the right triangles with AD as the common hypothenuse and
the projections of AD on AB and AC as legs, that D lies
on the angle bisector of angle BAC. Moreover, ∠ADF =
180◦ − 2 · ∠CAD = 180◦ − ∠BAC. The triangle ADF is
isosceles, so ∠BAD = ∠DAC = ∠CFD and AD = DF
in the triangles ABD and DCF . Moreover, we know that
CF = AF − AC = AB. The triangles ADB and FDC
are congruent (sas). So ∠BDA = ∠CDF . But this implies
∠BDC = ∠ADF = 180◦ − ∠BAC. This is sufficient for
ABDC to be an inscribed quadrilateral, and the claim has
been proved.

06.2. The real numbers x, y and z are not all equal and
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satisfy

x +
1
y

= y +
1
z

= z +
1
x

= k.

Determine all possible values of k.
Solution. Let (x, y, z) be a solution of the system of equa-
tions Since

x = k − 1
y

=
ky − 1

y
and z =

1
k − y

,

the equation
1

k − y
+

y

ky − 1
= k,

to be simplified into

(1 − k2)(y2 − ky + 1) = 0,

is true. So either |k| = 1 or

k = y +
1
y
.

The latter alternative, substituted to the original equations,
yields immediately x = y and z = y. So k = ±1 is the only

possibility. If k = 1, for instance x = 2, y = −1 and z =
1
2

is a solution; if k = −1, a solution is obtained by reversing
the signs for a solution with k = 1. So k = 1 and k = −1
are the only possible values for k.
06.3. A sequence of positive integers {an} is given by

a0 = m and an+1 = a5
n + 487

for all n ≥ 0. Determine all values of m for which the
sequence contains as many square numbers as possible.
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Solution. Consider the expression x5 + 487 modulo 4.
Clearly x ≡ 0 ⇒ x5 + 487 ≡ 3, x ≡ 1 ⇒ x5 + 487 ≡ 0;
x ≡ 2 ⇒ x5 + 487 ≡ 3, and x ≡ 3 ⇒ x5 + 487 ≡ 2. Square
numbers are always ≡ 0 or ≡ 1 mod 4. If there is an
even square in the sequence, then all subsequent numbers
of the sequence are either ≡ 2 or ≡ 3 mod 4, and hence not
squares. If there is an odd square in the sequence, then the
following number in the sequence can be an even square, but
then none of the other numbers are squares. So the maxi-
mal number of squares in the sequence is two. In this case
the first number of the sequence has to be the first square,
since no number of the sequence following another one sat-
isfies x ≡ 1 mod 4. We have to find numbers k2 such that
k10 + 487 = n2. We factorize n2 − k10. Because 487 is a
prime, n − k5 = 1 and n + k5 = 487 or n = 244 and k = 3.
The only solution of the problem thus is m = 32 = 9.

06.4. The squares of a 100 × 100 chessboard are painted
with 100 different colours. Each square has only one colour
and every colour is used exactly 100 times. Show that there
exists a row or a column on the chessboard in which at least
10 colours are used.

Solution. Denote by Ri the number of colours used to
colour the squares of the i’th row and let Cj be the number
of colours used to colour the squares of the j’th column. Let
rk be the number of rows on which colour k appears and let
ck be the number of columns on which colour k appears.
By the arithmetic-geometric inequality, rk + ck ≥ 2

√
rkck.

Since colour k appears at most ck times on each of the rk

columns on which it can be found, ckrk must be at least the
total number of occurences of colour k, which equals 100. So
rk +ck ≥ 20. In the sum

∑100
i=1 Ri, each colour k contributes

rk times and in the sum
∑100

j=1 Cj each colour k contributes
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ck times. Hence

100∑
i=1

Ri +
100∑
j=1

Cj =
100∑
k=1

rk +
100∑
k=1

ck =
100∑
k=1

(rk + ck) ≥ 2000.

But if the sum of 200 positive integers is at least 2000, at
least one of the summands is at least 10. The claim has
been proved.
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WINNERS OF THE NMC

The list gives, for each year, the highest scoring participant
or participants in the competition.

1987: Elina Sihvola (Finland), Geir Agnarsson (Iceland),
Richard Ehrenborg (Sweden)

1988: Patrik Andersson (Sweden), Daniel Bertilsson (Swe-
den), Mats Persson (Sweden)

1989: Mattias Jonsson (Sweden)

1990: Kimmo Uutela (Finland)

1991: Jan Kristian Haugland (Norway), Kong Xin-wei (Nor-
way), Andreas Strömbergsson (Sweden)

1992: Jan Kristian Haugland (Norway)

1993: B. V. Halldórsson (Iceland)

1994: Bjarne Knudsen (Denmark)

1995: Uoti Urpala (Finland)

1996: Hans Rullg̊ard (Sweden)

1997: Hans Rullg̊ard (Sweden)

1998: Hannu Niemistö (Finland)

1999: David Kunszenti-Kovacs (Norway), David Rydh
(Sweden), Hannu Niemistö (Finland), Jonas Sjöstrand
(Sweden), Marteinn Thor Hardarson (Iceland)

2000: Øivind Grotmol (Norway), Jonas Sjöstrand (Sweden)

2001: Dávid Kunszenti-Kovács (Norway), Riikka Korte
(Finland), Per-Anders Andersson (Sweden)
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2002: Dávid Kunszenti-Kovács (Norway)
2003: Dávid Kunszenti-Kovács (Norway)
2004: David Ericsson (Sweden), Johan Bredberg (Sweden),
Lauri Ahlroth (Finland), Miika Nikula (Finland) Paul Kje-
tel S. Lillemoen (Norway), Sebastian Dumitrescu (Finland)
2005: Sebastian Dumitrescu (Finland)
2006: Jørgen Vold Rennemo (Norway)


