Solving Linear Recurrence Relations

Niloufar Shafiei

Review

A recursive definition of a sequence specifies

- Initial conditions
- Recurrence relation

Example:

$\mathrm{a}_{0}=0$ and $\mathrm{a}_{1}=3 \longrightarrow$ Initial conditions
$a_{n}=2 a_{n-1}-a_{n-2}$
$\mathrm{a}_{\mathrm{n}}=3 \mathrm{n} \longrightarrow$ Solution

Linear recurrences

Linear recurrence:

Each term of a sequence is a linear function of earlier terms in the sequence.

For example:

$$
\begin{aligned}
a_{0} & =1 \quad a_{1}=6 \quad a_{2}=10 \\
a_{n} & =a_{n-1}+2 a_{n-2}+3 a_{n-3} \\
a_{3} & =a_{0}+2 a_{1}+3 a_{2} \\
& =1+2(6)+3(10)=43
\end{aligned}
$$

Linear recurrences

Linear recurrences

1. Linear homogeneous recurrences
2. Linear non-homogeneous recurrences

Linear homogeneous recurrences

A linear homogenous recurrence relation of degree k with constant coefficients is a recurrence relation of the form

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k},
$$

where $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{k}}$ are real numbers, and $\mathrm{c}_{\mathrm{k}} \neq 0$.
a_{n} is expressed in terms of the previous k terms of the sequence, so its degree is k.

This recurrence includes k initial conditions.
$\mathrm{a}_{0}=\mathrm{C}_{0}$
$\mathrm{a}_{1}=\mathrm{C}_{1}$
$\mathrm{a}_{\mathrm{k}}=\mathrm{C}_{\mathrm{k}}$

Example

Determine if the following recurrence relations are linear homogeneous recurrence relations with constant coefficients.

$P_{n}=(1.11) P_{n-1}$
a linear homogeneous recurrence relation of degree one

$a_{n}=a_{n-1}+a_{n-2}^{2}$
not linear
$\square \quad f_{n}=f_{n-1}+f_{n-2}$
a linear homogeneous recurrence relation of degree two
$\square \quad H_{n}=2 H_{n-1}+1$
not homogeneous
$\square \quad a_{n}=a_{n-6}$
a linear homogeneous recurrence relation of degree six
$\square \quad B_{n}=n B_{n-1}$
does not have constant coefficient

Solving linear homogeneous recurrences

Proposition 1:

- Let $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}$ be a linear homogeneous recurrence.
- Assume the sequence a_{n} satisfies the recurrence.
- Assume the sequence a_{n}^{\prime} also satisfies the recurrence.
- So, $b_{n}=a_{n}+a_{n}^{\prime}$ and $d_{n}=\alpha a_{n}$ are also sequences that satisfy the recurrence.
(α is any constant)
Proof:

$$
\begin{aligned}
b_{n} & =a_{n}+a_{n}^{\prime} \\
& =\left(c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}\right)+\left(c_{1} a_{n-1}^{\prime}+c_{2} a_{n-2}^{\prime}+\ldots+c_{k} a_{n-k}^{\prime}\right) \\
& =c_{1}\left(a_{n-1}+a_{n-1}^{\prime}\right)+c_{2}\left(a_{n-2}+a_{n-2}^{\prime}\right)+\ldots+c_{k}\left(a_{n-k}+a_{n-k}^{\prime}\right) \\
& =c_{1} b_{n-1}+c_{2} b_{n-2}+\ldots+c_{k} b_{n-k}
\end{aligned}
$$

So, b_{n} is a solution of the recurrence.

Solving linear homogeneous recurrences

Proposition 1:

- Let $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}$ be a linear homogeneous recurrence.
- Assume the sequence a_{n} satisfies the recurrence.
- Assume the sequence a_{n}^{\prime} also satisfies the recurrence.
- So, $b_{n}=a_{n}+a_{n}^{\prime}$ and $d_{n}=\alpha a_{n}$ are also sequences that satisfy the recurrence.
(α is any constant)
Proof:

$$
\begin{aligned}
d_{n} & =\alpha a_{n} \\
& =\alpha\left(c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}\right) \\
& =c_{1}\left(\alpha a_{n-1}\right)+c_{2}\left(\alpha a_{n-2}\right)+\ldots+c_{k}\left(\alpha a_{n-k}\right) \\
& =c_{1} d_{n-1}+c_{2} d_{n-2}+\ldots+c_{k} d_{n-k}
\end{aligned}
$$

So, d_{n} is a solution of the recurrence.

Solving linear homogeneous recurrences

It follows from the previous proposition, if we find some solutions to a linear homogeneous recurrence, then any linear combination of them will also be a solution to the linear homogeneous recurrence.

Solving linear homogeneous recurrences

Geometric sequences come up a lot when solving linear homogeneous recurrences.

So, try to find any solution of the form $a^{n}=r^{n}$ that satisfies the recurrence relation.

Solving linear homogeneous recurrences

- Recurrence relation

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}
$$

\square Try to find a solution of form r^{n}
$r^{n}=c_{1} r^{n-1}+c_{2} r^{n-2}+\ldots+c_{k} r^{n-k}$
$r^{n}-c_{1} r^{n-1}-c_{2} r^{n-2}-\ldots-c_{k} r^{n-k}=0$
$r^{k}-c_{1} r^{k-1}-c_{2} r^{k-2}-\ldots-c_{k}=0$
(dividing both sides by $\mathrm{r}^{\mathrm{n}-\mathrm{k}}$)

This equation is called the characteristic equation.

Example

Example:

The Fibonacci recurrence is

$$
F_{n}=F_{n-1}+F_{n-2}
$$

Its characteristic equation is

$$
r^{2}-r-1=0
$$

Solving linear homogeneous recurrences

Proposition 2:

r is a solution of $r^{k}-c_{1} r^{k-1}-c_{2} r^{k-2}-\ldots-c_{k}=0$ if and only if r^{n} is a solution of $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+$ $c_{k} a_{n-k}$.

Example:

consider the characteristic equation $r^{2}-4 r+4=0$.

$$
r^{2}-4 r+4=(r-2)^{2}=0
$$

So, $r=2$.
So, 2^{n} satisfies the recurrence $F_{n}=4 F_{n-1}-4 F_{n-2}$.

$$
\begin{aligned}
& 2^{n}=4 \cdot 2^{n-1}-4 \cdot 2^{n-2} \\
& 2^{n-2}(4-8+4)=0
\end{aligned}
$$

Solving linear homogeneous recurrences

Theorem 1:

\square Consider the characteristic equation $r^{k}-c_{1} r^{k-1}-c_{2} r^{k-2}-\ldots-c_{k}=$ 0 and the recurrence $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}$.
\square Assume r_{1}, r_{2}, \ldots and r_{m} all satisfy the equation.
$\square \quad$ Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ be any constants.
\square So, $a_{n}=\alpha_{1} r_{1}{ }^{n}+\alpha_{2} r_{2}{ }^{n}+\ldots+\alpha_{m} r_{m}^{n}$ satisfies the recurrence.

Proof:

By Proposition 2, $\forall i r_{i}^{n}$ satisfies the recurrence.
So, by Proposition 1, $\forall i \alpha_{i} r_{i}^{n}$ satisfies the recurrence.
Applying Proposition 1 again, the sequence $a_{n}=\alpha_{1} r_{1}{ }^{n}+\alpha_{2} r_{2}^{n}+\ldots$
$+\alpha_{m} r_{m}{ }^{n}$ satisfies the recurrence.

Example

What is the solution of the recurrence relation

$$
a_{n}=a_{n-1}+2 a_{n-2}
$$

with $\mathrm{a}_{0}=2$ and $\mathrm{a}_{1}=7$?

Solution:

\square Since it is linear homogeneous recurrence, first find its characteristic equation

$$
\begin{array}{ll}
r^{2}-r-2=0 & \\
(r+1)(r-2)=0 & r_{1}=2 \text { and } r_{2}=-1
\end{array}
$$

\square So, by theorem $a_{n}=\alpha_{1} 2^{n}+\alpha_{2}(-1)^{n}$ is a solution.
\square Now we should find α_{1} and α_{2} using initial conditions.

$$
\begin{aligned}
& a_{0}=\alpha_{1}+\alpha_{2}=2 \\
& a_{1}=\alpha_{1} 2+\alpha_{2}(-1)=7
\end{aligned}
$$

\square So, $\alpha_{1}=3$ and $\alpha_{2}=-1$.
$\square \quad a_{n}=3 \cdot 2^{n}-(-1)^{n}$ is a solution.

Example

What is the solution of the recurrence relation

$$
f_{n}=f_{n-1}+f_{n-2}
$$

with $f_{0}=0$ and $f_{1}=1$?
Solution:
\square Since it is linear homogeneous recurrence, first find its characteristic equation

$$
\begin{aligned}
& r^{2}-r-1=0 \\
& r_{1}=(1+\sqrt{5}) / 2 \text { and } r_{2}=(1-\sqrt{5}) / 2
\end{aligned}
$$

\square So, by theorem $f_{n}=\alpha_{1}((1+\sqrt{5}) / 2)^{n}+\alpha_{2}((1-\sqrt{5}) / 2)^{n}$ is a solution.
\square Now we should find α_{1} and α_{2} using initial conditions.

$$
\begin{aligned}
& f_{0}=\alpha_{1}+\alpha_{2}=0 \\
& f_{1}=\alpha_{1}(1+\sqrt{5}) / 2+\alpha_{2}(1-\sqrt{ } 5) / 2=1
\end{aligned}
$$

\square So, $\alpha_{1}=1 / \sqrt{ } 5$ and $\alpha_{2}=-1 / \sqrt{ } 5$.
$\square a_{n}=1 / \sqrt{5} \cdot((1+\sqrt{5}) / 2)^{n}-1 / \sqrt{5}((1-\sqrt{5}) / 2)^{n}$ is a solution.

Example

What is the solution of the recurrence relation

$$
a_{n}=-a_{n-1}+4 a_{n-2}+4 a_{n-3}
$$

with $a_{0}=8, a_{1}=6$ and $a_{2}=26$?

Solution:

\square Since it is linear homogeneous recurrence, first find its characteristic equation

$$
\begin{array}{ll}
r^{3}+r^{2}-4 r-4=0 \\
(r+1)(r+2)(r-2)=0 & r_{1}=-1, r_{2}=-2 \text { and } r_{3}=2
\end{array}
$$

\square So, by theorem $a_{n}=\alpha_{1}(-1)^{n}+\alpha_{2}(-2)^{n}+\alpha_{3} 2^{n}$ is a solution.
\square Now we should find α_{1}, α_{2} and α_{3} using initial conditions.

$$
a_{0}=\alpha_{1}+\alpha_{2}+\alpha_{3}=8
$$

$$
a_{1}=-\alpha_{1}-2 \alpha_{2}+2 \alpha_{3}=6
$$

$$
a_{2}=\alpha_{1}+4 \alpha_{2}+4 \alpha_{3}=26
$$

\square So, $\alpha_{1}=2, \alpha_{2}=1$ and $\alpha_{3}=5$.
$\square \quad a_{n}=2 \cdot(-1)^{n}+(-2)^{n}+5 \cdot 2^{n}$ is a solution.

Solving linear homogeneous recurrences

If the characteristic equation has k distinct solutions $r_{1}, r_{2}, \ldots, r_{k}$, it can be written as

$$
\left(r-r_{1}\right)\left(r-r_{2}\right) \ldots\left(r-r_{k}\right)=0 .
$$

If, after factoring, the equation has $m+1$ factors of (r r_{1}), for example, r_{1} is called a solution of the characteristic equation with multiplicity $\mathrm{m}+1$.

When this happens, not only $r_{1}{ }^{n}$ is a solution, but also $n r_{1}{ }^{n}, n^{2} r_{1}{ }^{n}, \ldots$ and $n^{m} r_{1}{ }^{n}$ are solutions of the recurrence.

Solving linear homogeneous recurrences

Proposition 3:
\square Assume r_{0} is a solution of the characteristic equation with multiplicity at least $m+1$.
\square So, $\mathrm{n}^{m} r_{0}{ }^{n}$ is a solution to the recurrence.

Solving linear homogeneous recurrences

When a characteristic equation has fewer than k distinct solutions:

- We obtain sequences of the form described in Proposition 3.
- By Proposition 1, we know any combination of these solutions is also a solution to the recurrence.
- We can find those that satisfies the initial conditions.

Solving linear homogeneous recurrences

Theorem 2:

\square Consider the characteristic equation $r^{k}-c_{1} r^{k-1}-c_{2} r^{k-2}-\ldots$ $c_{k}=0$ and the recurrence $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}$.
\square Assume the characteristic equation has $t \leq k$ distinct solutions.
$\square \quad$ Let $\forall i(1 \leq i \leq t) r_{i}$ with multiplicity m_{i} be a solution of the equation.
\square Let $\forall i, j\left(1 \leq i \leq t\right.$ and $\left.0 \leq j \leq m_{i}-1\right) \alpha_{i j}$ be a constant.
\square So, $a_{n}=\left(\alpha_{10}+\alpha_{11} n+\ldots+\alpha_{1, m_{1-1}} n^{m_{1-1}}\right) r_{1}{ }^{n}$

$$
\begin{aligned}
& +\left(\alpha_{20}+\alpha_{21} n+\ldots+\alpha_{2, m_{2}-1} n^{m_{2}-1}\right) r_{2}^{n} \\
& +\ldots \\
& +\left(\alpha_{t 0}+\alpha_{t 1} n+\ldots+\alpha_{t, m_{t}-1} n^{m_{t}-1}\right) r_{t}^{n}
\end{aligned}
$$

satisfies the recurrence.

Example

What is the solution of the recurrence relation

$$
a_{n}=6 a_{n-1}-9 a_{n-2}
$$

with $\mathrm{a}_{0}=1$ and $\mathrm{a}_{1}=6$?

Solution:

\square First find its characteristic equation

$$
r^{2}-6 r+9=0
$$

$$
(r-3)^{2}=0 \quad r_{1}=3 \quad \text { (Its multiplicity is 2.) }
$$

\square So, by theorem $a_{n}=\left(\alpha_{10}+\alpha_{11} n\right)(3)^{n}$ is a solution.
\square Now we should find constants using initial conditions.

$$
\begin{aligned}
& a_{0}=\alpha_{10}=1 \\
& a_{1}=3 \alpha_{10}+3 \alpha_{11}=6
\end{aligned}
$$

\square So, $\alpha_{11}=1$ and $\alpha_{10}=1$.
$\square \quad a_{n}=3^{n}+n 3^{n}$ is a solution.

Example

What is the solution of the recurrence relation

$$
a_{n}=-3 a_{n-1}-3 a_{n-2}-a_{n-3}
$$

with $\mathrm{a}_{0}=1, \mathrm{a}_{1}=-2$ and $\mathrm{a}_{2}=-1$?
Solution:
\square Find its characteristic equation

$$
\left.\begin{array}{ll}
r^{3}+3 r^{2}+3 r+1=0 \\
(r+1)^{3}=0 & r_{1}=-1
\end{array} \quad \text { (Its multiplicity is } 3 .\right)
$$

\square So, by theorem $a_{n}=\left(\alpha_{10}+\alpha_{11} n+\alpha_{12} n^{2}\right)(-1)^{n}$ is a solution.
\square Now we should find constants using initial conditions.

$$
\begin{aligned}
& a_{0}=\alpha_{10}=1 \\
& a_{1}=-\alpha_{10}-\alpha_{11}-\alpha_{12}=-2 \\
& a_{2}=\alpha_{10}+2 \alpha_{11}+4 \alpha_{12}=-1
\end{aligned}
$$

\square So, $\alpha_{10}=1, \alpha_{11}=3$ and $\alpha_{12}=-2$.
$\square \quad a_{n}=\left(1+3 n-2 n^{2}\right)(-1)^{n}$ is a solution.

Example

What is the solution of the recurrence relation

$$
a_{n}=8 a_{n-2}-16 a_{n-4}, \text { for } n \geq 4 \text {, }
$$

with $a_{0}=1, a_{1}=4, a_{2}=28$ and $a_{3}=32$?

Solution:

\square Find its characteristic equation

$$
\begin{aligned}
& r^{4}-8 r^{2}+16=0 \\
& \left(r^{2}-4\right)^{2}=(r-2)^{2}(r+2)^{2}=0 \\
& r_{1}=2 \quad r_{2}=-2 \quad \text { (Their multiplicities are 2.) }
\end{aligned}
$$

\square So, by theorem $a_{n}=\left(\alpha_{10}+\alpha_{11} n\right)(2)^{n}+\left(\alpha_{20}+\alpha_{21} n\right)(-2)^{n}$ is a solution.
\square Now we should find constants using initial conditions.

$$
\begin{aligned}
& a_{0}=\alpha_{10}+\alpha_{20}=1 \\
& a_{1}=2 \alpha_{10}+2 \alpha_{11}-2 \alpha_{20}-2 \alpha_{21}=4 \\
& a_{2}=4 \alpha_{10}+8 \alpha_{11}+4 \alpha_{20}+8 \alpha_{21}=28 \\
& a_{3}=8 \alpha_{10}+24 \alpha_{11}-8 \alpha_{20}-24 \alpha_{21}=32
\end{aligned}
$$

\square So, $\alpha_{10}=1, \alpha_{11}=2, \alpha_{20}=0$ and $\alpha_{21}=1$.
$\square \quad a_{n}=(1+2 n) 2^{n}+n(-2)^{n}$ is a solution.

Linear non-homogeneous recurrences

A linear non-homogenous recurrence relation with constant coefficients is a recurrence relation of the form

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}+f(n),
$$

where $c_{1}, c_{2}, \ldots, c_{k}$ are real numbers, and $f(n)$ is a function depending only on n.

The recurrence relation

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k},
$$

is called the associated homogeneous recurrence relation.

This recurrence includes k initial conditions.

$$
a_{0}=C_{0} \quad a_{1}=C_{1} \ldots \quad a_{k}=C_{k}
$$

Example

The following recurrence relations are linear nonhomogeneous recurrence relations.

- $a_{n}=a_{n-1}+2^{n}$
- $a_{n}=a_{n-1}+a_{n-2}+n^{2}+n+1$

ㅁ $a_{n}=a_{n-1}+a_{n-4}+n!$
ㅁ $a_{n}=a_{n-6}+n 2^{n}$

Linear non-homogeneous recurrences

Proposition 4:

- Let $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}+f(n)$ be a linear non-homogeneous recurrence.
- Assume the sequence b_{n} satisfies the recurrence.
- Another sequence a_{n} satisfies the nonhomogeneous recurrence if and only if $h_{n}=a_{n}-b_{n}$ is also a sequence that satisfies the associated homogeneous recurrence.

Linear non-homogeneous recurrences

Proof:

Part1: if h_{n} satisfies the associated homogeneous recurrence then a_{n} is satisfies the non-homogeneous recurrence.

- $b_{n}=c_{1} b_{n-1}+c_{2} b_{n-2}+\ldots+c_{k} b_{n-k}+f(n)$
- $h_{n}=c_{1} h_{n-1}+c_{2} h_{n-2}+\ldots+c_{k} h_{n-k}$
$b_{n}+h_{n}$
$=c_{1}\left(b_{n-1}+h_{n-1}\right)+c_{2}\left(b_{n-2}+h_{n-2}\right)+\ldots+c_{k}\left(b_{n-k}+h_{n-k}\right)+f(n)$
Since $a_{n}=b_{n}+h_{n}, a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}+f(n)$. So, a_{n} is a solution of the non-homogeneous recurrence.

Linear non-homogeneous recurrences

Proof:

Part2: if a_{n} satisfies the non-homogeneous recurrence then h_{n} is satisfies the associated homogeneous recurrence.

- $b_{n}=c_{1} b_{n-1}+c_{2} b_{n-2}+\ldots+c_{k} b_{n-k}+f(n)$
- $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}+f(n)$
$a_{n}-b_{n}$
$=c_{1}\left(a_{n-1}-b_{n-1}\right)+c_{2}\left(a_{n-2}-b_{n-2}\right)+\ldots+c_{k}\left(a_{n-k}-b_{n-k}\right)$
Since $h_{n}=a_{n}-b_{n}, h_{n}=c_{1} h_{n-1}+c_{2} h_{n-2}+\ldots+c_{k} h_{n-k}$
So, h_{n} is a solution of the associated homogeneous recurrence.

Linear non-homogeneous recurrences

Proposition 4:

Let $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}+f(n)$ be a linear nonhomogeneous recurrence.

- Assume the sequence b_{n} satisfies the recurrence.
- Another sequence a_{n} satisfies the non-homogeneous recurrence if and only if $h_{n}=a_{n}-b_{n}$ is also a sequence that satisfies the associated homogeneous recurrence.
\square We already know how to find h_{n}.
\square For many common $f(n)$, a solution b_{n} to the non-homogeneous recurrence is similar to $f(n)$.
$\square \quad$ Then you should find solution $a_{n}=b_{n}+h_{n}$ to the nonhomogeneous recurrence that satisfies both recurrence and initial conditions.

Example

What is the solution of the recurrence relation

$$
a_{n}=a_{n-1}+a_{n-2}+3 n+1 \text { for } n \geq 2 \text {, }
$$

with $\mathrm{a}_{0}=2$ and $\mathrm{a}_{1}=3$?

Solution:

\square Since it is linear non-homogeneous recurrence, b_{n} is similar to $f(n)$ Guess: $b_{n}=c n+d$

$$
\begin{aligned}
& b_{n}=b_{n-1}+b_{n-2}+3 n+1 \\
& c n+d=c(n-1)+d+c(n-2)+d+3 n+1 \\
& c n+d=c n-c+d+c n-2 c+d+3 n+1 \\
& 0=(3+c) n+(d-3 c+1) \\
& c=-3 \quad d=-10
\end{aligned}
$$

$\square \quad$ So, $b_{n}=-3 n-10$.
(b_{n} only satisfies the recurrence, it does not satisfy the initial conditions.)

Example

What is the solution of the recurrence relation

$$
a_{n}=a_{n-1}+a_{n-2}+3 n+1 \text { for } n \geq 2 \text {, }
$$

with $\mathrm{a}_{0}=2$ and $\mathrm{a}_{1}=3$?

Solution:

\square We are looking for a_{n} that satisfies both recurrence and initial conditions.
$\square \quad a_{n}=b_{n}+h_{n}$ where h_{n} is a solution for the associated homogeneous recurrence: $h_{n}=h_{n-1}+h_{n-2}$
$\square \quad$ By previous example, we know $h_{n}=\alpha_{1}((1+\sqrt{5}) / 2)^{n}+\alpha_{2}((1-\sqrt{5}) / 2)^{n}$.

$$
\begin{aligned}
a_{n} & =b_{n}+h_{n} \\
& =-3 n-10+\alpha_{1}((1+\sqrt{5}) / 2)^{n}+\alpha_{2}((1-\sqrt{5}) / 2)^{n}
\end{aligned}
$$

$\square \quad$ Now we should find constants using initial conditions.

$$
\begin{aligned}
& a_{0}=-10+\alpha_{1}+\alpha_{2}=2 \\
& a_{1}=-13+\alpha_{1}(1+\sqrt{5}) / 2+\alpha_{2}(1-\sqrt{ } 5) / 2=3 \\
& \alpha_{1}=6+2 \sqrt{5} \quad \alpha_{2}=6-2 \sqrt{5}
\end{aligned}
$$

So, $a_{n}=-3 n-10+(6+2 \sqrt{5})((1+\sqrt{5}) / 2)^{n}+(6-2 \sqrt{5})((1-\sqrt{5}) / 2)^{n}$.

Example

What is the solution of the recurrence relation

$$
a_{n}=2 a_{n-1}-a_{n-2}+2^{n} \text { for } n \geq 2 \text {, }
$$

with $\mathrm{a}_{0}=1$ and $\mathrm{a}_{1}=2$?

Solution:

\square Since it is linear non-homogeneous recurrence, b_{n} is similar to $f(n)$ Guess: $b_{n}=c 2^{n}+d$ $b_{n}=2 b_{n-1}-b_{n-2}+2^{n}$
$c 2^{n}+d=2\left(c 2^{n-1}+d\right)-\left(c 2^{n-2}+d\right)+2^{n}$
$c 2^{n}+d=c 2^{n}+2 d-c 2^{n-2}-d+2^{n}$
$0=(-4 c+4 c-c+4) 2^{n-2}+(-d+2 d-d)$
$c=4 \quad d=0$
$\square \quad$ So, $b_{n}=4.2^{n}$.
(b_{n} only satisfies the recurrence, it does not satisfy the initial conditions.)

Example

What is the solution of the recurrence relation

$$
a_{n}=2 a_{n-1}-a_{n-2}+2^{n} \text { for } n \geq 2 \text {, }
$$

with $\mathrm{a}_{0}=1$ and $\mathrm{a}_{1}=2$?

Solution:

\square We are looking for a_{n} that satisfies both recurrence and initial conditions.
$\square \quad a_{n}=b_{n}+h_{n}$ where h_{n} is a solution for the associated homogeneous recurrence: $h_{n}=2 h_{n-1}-h_{n-2}$.

- Find its characteristic equation

$$
\begin{aligned}
& r^{2}-2 r+1=0 \\
& (r-1)^{2}=0 \\
& \left.r_{1}=1 \quad \text { (Its multiplicity is } 2 .\right)
\end{aligned}
$$

\square So, by theorem $h_{n}=\left(\alpha_{1}+\alpha_{2} n\right)(1)^{n}=\alpha_{1}+\alpha_{2} n$ is a solution.

Example

What is the solution of the recurrence relation

$$
a_{n}=2 a_{n-1}-a_{n-2}+2^{n} \text { for } n \geq 2 \text {, }
$$

with $\mathrm{a}_{0}=1$ and $\mathrm{a}_{1}=2$?

Solution:

$\square \quad a_{n}=b_{n}+h_{n}$
$\square a_{n}=4.2^{n}+\alpha_{1}+\alpha_{2} n$ is a solution.
\square Now we should find constants using initial conditions.
$a_{0}=4+\alpha_{1}=1$
$a_{1}=8-\alpha_{1}+\alpha_{2}=2$
$\alpha_{1}=-3 \quad \alpha_{2}=-3$
So, $a_{n}=4 \cdot 2^{n}-3 n-3$.

Recommended exercises

$1,3,15,17,19,21,23,25,31,35$

Eric Ruppert's Notes about Solving
Recurrences
(http://www.cse.yorku.ca/course_archive/2007
-08/F/1019/A/recurrence.pdf)

