Solving Linear Recurrence Relations

Review

A recursive definition of a sequence specifies

- Initial conditions
 - Recurrence relation

Linear recurrences

Linear recurrence:

Each term of a sequence is a linear function of earlier terms in the sequence.

For example: $a_0 = 1$ $a_1 = 6$ $a_2 = 10$ $a_n = a_{n-1} + 2a_{n-2} + 3a_{n-3}$ $a_3 = a_0 + 2a_1 + 3a_2$ = 1 + 2(6) + 3(10) = 43

Linear recurrences

Linear recurrences

1. Linear homogeneous recurrences

2. Linear non-homogeneous recurrences

Linear homogeneous recurrences

A linear homogenous recurrence relation of degree k with constant coefficients is a recurrence relation of the form

 $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k},$

where $c_1, c_2, ..., c_k$ are real numbers, and $c_k \neq 0$.

a_n is expressed in terms of the previous k terms of the sequence, so its degree is k.

This recurrence includes k initial conditions.

 $a_0 = C_0$ $a_1 = C_1$... $a_k = C_k$

Determine if the following recurrence relations are linear homogeneous recurrence relations with constant coefficients.

P_n =
$$(1.11)P_{n-1}$$

a linear homogeneous recurrence relation of degree one

$$a_n = a_{n-1} + a_{n-2}^2$$

not linear

$$f_{n} = f_{n-1} + f_{n-2}$$

a linear homogeneous recurrence relation of degree two

$$H_n = 2H_{n-1} + 1$$

not homogeneous

$$a_n = a_{n-6}$$

a linear homogeneous recurrence relation of degree six

$$B_n = nB_{n-1}$$

does not have constant coefficient

Proposition 1:

- Let $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$ be a linear homogeneous recurrence.
- Assume the sequence a_n satisfies the recurrence.
- Assume the sequence a'_n also satisfies the recurrence.
- So, $b_n = a_n + a'_n$ and $d_n = \alpha a_n$ are also sequences that satisfy the recurrence.

(α is any constant)

Proof:

$$\begin{split} b_n &= a_n + a'_n \\ &= (c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}) + (c_1 a'_{n-1} + c_2 a'_{n-2} + \ldots + c_k a'_{n-k}) \\ &= c_1 (a_{n-1} + a'_{n-1}) + c_2 (a_{n-2} + a'_{n-2}) + \ldots + c_k (a_{n-k} + a'_{n-k}) \\ &= c_1 b_{n-1} + c_2 b_{n-2} + \ldots + c_k b_{n-k} \\ &\text{So, } b_n \text{ is a solution of the recurrence.} \end{split}$$

Proposition 1:

- Let $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$ be a linear homogeneous recurrence.
- Assume the sequence a_n satisfies the recurrence.
- Assume the sequence a'_n also satisfies the recurrence.
- So, $b_n = a_n + a'_n$ and $d_n = \alpha a_n$ are also sequences that satisfy the recurrence.

(α is any constant)

Proof:

$$d_n = \alpha a_n$$

$$= \alpha (c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k})$$

- $= c_{1} (\alpha a_{n-1}) + c_{2} (\alpha a_{n-2}) + \dots + c_{k} (\alpha a_{n-k})$
- $= c_1 d_{n-1} + c_2 d_{n-2} + \dots + c_k d_{n-k}$

So, d_n is a solution of the recurrence.

It follows from the previous proposition, if we find some solutions to a linear homogeneous recurrence, then **any linear combination** of them will also be a solution to the linear homogeneous recurrence.

Geometric sequences come up a lot when solving linear homogeneous recurrences.

So, try to find any solution of the form aⁿ = rⁿ that satisfies the recurrence relation.

Recurrence relation

 $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$

Try to find a solution of form r^n $r^n = c_1 r^{n-1} + c_2 r^{n-2} + ... + c_k r^{n-k}$

$$r^{n} - C_{1}r^{n-1} - C_{2}r^{n-2} - \dots - C_{k}r^{n-k} = 0$$

 $r^{k} - c_1 r^{k-1} - c_2 r^{k-2} - \dots - c_k = 0$ (dividing both sides by r^{n-k})

This equation is called the characteristic equation.

Example:

The Fibonacci recurrence is

 $\mathbf{F}_{n} = \mathbf{F}_{n-1} + \mathbf{F}_{n-2}$

Its characteristic equation is

$$r^2 - r - 1 = 0$$

Proposition 2:

r is a solution of $r^k - c_1 r^{k-1} - c_2 r^{k-2} - \dots - c_k = 0$ if and only if r^n is a solution of $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$.

Example:

consider the characteristic equation $r^2 - 4r + 4 = 0$.

$$r^2 - 4r + 4 = (r - 2)^2 = 0$$

So, r=2.

So, 2^n satisfies the recurrence $F_n = 4F_{n-1} - 4F_{n-2}$.

$$2^{n} = 4 \cdot 2^{n-1} - 4 \cdot 2^{n-2}$$

 $2^{n-2}(4-8+4)=0$

Theorem 1:

- Consider the characteristic equation $r^{k} c_1 r^{k-1} c_2 r^{k-2} \dots c_k = 0$ and the recurrence $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$.
- Assume r_1 , r_2 , ... and r_m all satisfy the equation.
- Let $\alpha_1, \alpha_2, ..., \alpha_m$ be any constants.
- So, $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n + \dots + \alpha_m r_m^n$ satisfies the recurrence.

Proof:

By Proposition 2, $\forall i r_i^n$ satisfies the recurrence.

So, by Proposition 1, $\forall i \alpha_i r_i^n$ satisfies the recurrence.

Applying Proposition 1 again, the sequence $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n + ... + \alpha_m r_m^n$ satisfies the recurrence.

What is the solution of the recurrence relation

 $a_n = a_{n-1} + 2a_{n-2}$

with $a_0=2$ and $a_1=7?$

Solution:

Since it is linear homogeneous recurrence, first find its characteristic equation

 $r^2 - r - 2 = 0$

(r+1)(r-2) = 0 $r_1 = 2 \text{ and } r_2 = -1$

So, by theorem $a_n = \alpha_1 2^n + \alpha_2 (-1)^n$ is a solution.

D Now we should find α_1 and α_2 using initial conditions.

$$a_0 = \alpha_1 + \alpha_2 = 2$$

 $a_1 = \alpha_1 2 + \alpha_2(-1) =$

So, $\alpha_1 = 3$ and $\alpha_2 = -1$.

 \Box $a_n = 3 \cdot 2^n - (-1)^n$ is a solution.

What is the solution of the recurrence relation

 $\mathbf{f}_{\mathbf{n}} = \mathbf{f}_{\mathbf{n}-1} + \mathbf{f}_{\mathbf{n}-2}$

with $f_0=0$ and $f_1=1$?

Solution:

Since it is linear homogeneous recurrence, first find its characteristic equation

 $r^2 - r - 1 = 0$

$$r_1 = (1 + \sqrt{5})/2$$
 and $r_2 = (1 - \sqrt{5})/2$

So, by theorem $f_n = \alpha_1((1+\sqrt{5})/2)^n + \alpha_2((1-\sqrt{5})/2)^n$ is a solution.

D Now we should find α_1 and α_2 using initial conditions.

$$f_0 = \alpha_1 + \alpha_2 = 0$$

$$f_1 = \alpha_1 (1 + \sqrt{5})/2 + \alpha_2 (1 - \sqrt{5})/2 = 1$$

 \Box So, $\alpha_1 = 1/\sqrt{5}$ and $\alpha_2 = -1/\sqrt{5}$.

□ $a_n = 1/\sqrt{5}$. $((1+\sqrt{5})/2)^n - 1/\sqrt{5}((1-\sqrt{5})/2)^n$ is a solution.

What is the solution of the recurrence relation

 $a_n = -a_{n-1} + 4a_{n-2} + 4a_{n-3}$

with $a_0 = 8$, $a_1 = 6$ and $a_2 = 26$?

Solution:

Since it is linear homogeneous recurrence, first find its characteristic equation
r³ + r² - 4r - 4 = 0
(r+1)(r+2)(r-2) = 0
r₁ = -1, r₂ = -2 and r₃ = 2
So, by theorem a_n = α₁(-1)ⁿ + α₂(-2)ⁿ + α₃2ⁿ is a solution.
Now we should find α₁, α₂ and α₃ using initial conditions.
a₀ = α₁ + α₂ + α₃ = 8
a₁ = -α₁ - 2α₂ + 2α₃ = 6
a₂ = α₁ + 4α₂ + 4α₃ = 26
So, α₁ = 2, α₂ = 1 and α₃ = 5.
a_n = 2 · (-1)ⁿ + (-2)ⁿ + 5 · 2ⁿ is a solution.

If the characteristic equation has k distinct solutions $r_1, r_2, ..., r_k$, it can be written as $(r - r_1)(r - r_2)...(r - r_k) = 0.$

If, after factoring, the equation has m+1 factors of $(r - r_1)$, for example, r_1 is called a solution of the characteristic equation with multiplicity m+1.

When this happens, not only r_1^n is a solution, but also nr_1^n , $n^2r_1^n$, ... and $n^mr_1^n$ are solutions of the recurrence.

Proposition 3:

- Assume r₀ is a solution of the characteristic equation with multiplicity at least m+1.
- \Box So, $n^m r_0^n$ is a solution to the recurrence.

When a characteristic equation has fewer than k distinct solutions:

- We obtain sequences of the form described in Proposition 3.
- By Proposition 1, we know any combination of these solutions is also a solution to the recurrence.
- We can find those that satisfies the initial conditions.

Theorem 2:

- Consider the characteristic equation $r^{k} c_1 r^{k-1} c_2 r^{k-2} ... c_k = 0$ and the recurrence $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$.
- ☐ Assume the characteristic equation has t≤k distinct solutions.
- Let ∀i (1≤i≤t) r_i with multiplicity m_i be a solution of the equation.
- □ Let $\forall i, j (1 \le i \le t \text{ and } 0 \le j \le m_i 1) \alpha_{ij}$ be a constant.

So,
$$a_n = (\alpha_{10} + \alpha_{11} n + ... + \alpha_{1,m_1-1} n^{m_1-1}) r_1^n + (\alpha_{20} + \alpha_{21} n + ... + \alpha_{2,m_2-1} n^{m_2-1}) r_2^n + ...$$

+ (
$$\alpha_{t0}$$
 + α_{t1} n+ ... + $\alpha_{t,m_{t}-1}$ n^{m_t-1}) r_tⁿ

satisfies the recurrence.

What is the solution of the recurrence relation

 $a_n = 6a_{n-1} - 9a_{n-2}$ with $a_0 = 1$ and $a_1 = 6$?

Solution:

□ First find its characteristic equation

$$e^2 - 6r + 9 = 0$$

 $(r - 3)^2 = 0$ $r_1 = 3$ (Its multiplicity is 2.)

- So, by theorem $a_n = (\alpha_{10} + \alpha_{11}n)(3)^n$ is a solution.
- Now we should find constants using initial conditions.

$$a_0 = \alpha_{10} = 1$$

$$a_1 = 3 \alpha_{10} + 3\alpha_{11} = 6$$

So,
$$\alpha_{11}$$
 = 1 and α_{10} = 1.

 $\Box \quad a_n = 3^n + n3^n \text{ is a solution.}$

What is the solution of the recurrence relation

$$a_n = -3a_{n-1} - 3a_{n-2} - a_{n-3}$$

with $a_0=1$, $a_1=-2$ and $a_2=-1$?

Solution:

□ Find its characteristic equation

$$r^3 + 3r^2 + 3r + 1 = 0$$

 $(r + 1)^3 = 0$ $r_1 = -1$ (Its multiplicity is 3.)

- So, by theorem $a_n = (\alpha_{10} + \alpha_{11}n + \alpha_{12}n^2)(-1)^n$ is a solution.
- Now we should find constants using initial conditions.

$$a_{0} = \alpha_{10} = 1$$

$$a_{1} = -\alpha_{10} - \alpha_{11} - \alpha_{12} = -2$$

$$a_{2} = \alpha_{10} + 2\alpha_{11} + 4\alpha_{12} = -1$$

$$So, \alpha_{10} = 1, \alpha_{11} = 3 \text{ and } \alpha_{12} = -2.$$

$$a_{n} = (1 + 3n - 2n^{2}) (-1)^{n} \text{ is a solution}$$

What is the solution of the recurrence relation $a_n = 8a_{n-2} - 16a_{n-4}$, for n≥4, with $a_0=1$, $a_1=4$, $a_2=28$ and $a_3=32$? Solution: Find its characteristic equation $r^4 - 8r^2 + 16 = 0$ $(r^2 - 4)^2 = (r-2)^2 (r+2)^2 = 0$ $r_1 = 2$ $r_2 = -2$ (Their multiplicities are 2.) **So**, by theorem $a_n = (\alpha_{10} + \alpha_{11}n)(2)^n + (\alpha_{20} + \alpha_{21}n)(-2)^n$ is a solution. Now we should find constants using initial conditions. $a_0 = \alpha_{10} + \alpha_{20} = 1$ $a_1 = 2\alpha_{10} + 2\alpha_{11} - 2\alpha_{20} - 2\alpha_{21} = 4$ $a_2 = 4\alpha_{10} + 8\alpha_{11} + 4\alpha_{20} + 8\alpha_{21} = 28$ $a_3 = 8\alpha_{10} + 24\alpha_{11} - 8\alpha_{20} - 24\alpha_{21} = 32$ \Box So, $\alpha_{10} = 1$, $\alpha_{11} = 2$, $\alpha_{20} = 0$ and $\alpha_{21} = 1$. \Box $a_n = (1 + 2n) 2^n + n (-2)^n$ is a solution.

Linear non-homogeneous recurrences

A linear non-homogenous recurrence relation with constant coefficients is a recurrence relation of the form

 $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} + f(n),$

where $c_1, c_2, ..., c_k$ are real numbers, and f(n) is a function depending only on n.

The recurrence relation

 $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k},$

is called the associated homogeneous recurrence relation.

This recurrence includes k initial conditions.

$$\mathbf{a}_0 = \mathbf{C}_0 \qquad \mathbf{a}_1 = \mathbf{C}_1 \dots \mathbf{a}_k = \mathbf{C}_k$$

The following recurrence relations are linear nonhomogeneous recurrence relations.

$$a_n = a_{n-1} + 2^r$$

$$a_n = a_{n-1} + a_{n-2} + n^2 + n + 1$$

$$a_n = a_{n-1} + a_{n-4} + n!$$

 $\Box a_n = a_{n-6} + n2^n$

recurrences

Proposition 4:

- Let $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k} + f(n)$ be a linear non-homogeneous recurrence.
 - Assume the sequence b_n satisfies the recurrence.
 - Another sequence a_n satisfies the nonhomogeneous recurrence if and only if $h_n = a_n - b_n$ is also a sequence that satisfies the associated homogeneous recurrence.

recurrences

Proof:

Part1: if h_n satisfies the associated homogeneous recurrence then a_n is satisfies the non-homogeneous recurrence.

b_n =
$$c_1 b_{n-1} + c_2 b_{n-2} + \dots + c_k b_{n-k} + f(n)$$

$$h_n = c_1 h_{n-1} + c_2 h_{n-2} + \dots + c_k h_{n-k}$$

 $b_n + h_n$ = c₁ (b_{n-1}+ h_{n-1}) + c₂ (b_{n-2}+ h_{n-2}) + ... + c_k (b_{n-k} + h_{n-k}) + f(n)

Since $a_n = b_n + h_n$, $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k} + f(n)$. So, a_n is a solution of the non-homogeneous recurrence.

recurrences

Proof:

Part2: if a_n satisfies the non-homogeneous recurrence then h_n is satisfies the associated homogeneous recurrence.

$$b_n = c_1 b_{n-1} + c_2 b_{n-2} + \dots + c_k b_{n-k} + f(n)$$

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} + f(n)$$

 $a_n - b_n$

 $= c_1 (a_{n-1} - b_{n-1}) + c_2 (a_{n-2} - b_{n-2}) + \dots + c_k (a_{n-k} - b_{n-k})$ Since $h_n = a_n - b_n$, $h_n = c_1 h_{n-1} + c_2 h_{n-2} + \dots + c_k h_{n-k}$ So, h_n is a solution of the associated homogeneous recurrence.

recurrences

Proposition 4:

- Let $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k} + f(n)$ be a linear nonhomogeneous recurrence.
- Assume the sequence b_n satisfies the recurrence.
- Another sequence a_n satisfies the non-homogeneous recurrence if and only if h_n = a_n - b_n is also a sequence that satisfies the associated homogeneous recurrence.
- \Box We already know how to find h_n .
- For many common f(n), a solution b_n to the non-homogeneous recurrence is similar to f(n).
- Then you should find solution $a_n = b_n + h_n$ to the nonhomogeneous recurrence that satisfies both recurrence and initial conditions.

What is the solution of the recurrence relation

$$a_n = a_{n-1} + a_{n-2} + 3n + 1$$
 for n≥2,

with $a_0=2$ and $a_1=3?$

Solution:

 Since it is linear non-homogeneous recurrence, b_n is similar to f(n) Guess: b_n = cn + d b_n = b_{n-1} + b_{n-2} + 3n + 1 cn + d = c(n-1) + d + c(n-2) + d + 3n + 1 cn + d = cn - c + d + cn - 2c + d + 3n + 1 0 = (3+c)n + (d-3c+1) c = -3 d=-10
 So, b_n = - 3n - 10. (b_n only satisfies the recurrence, it does not satisfy the initial conditions.)

What is the solution of the recurrence relation

$$a_n = a_{n-1} + a_{n-2} + 3n + 1$$
 for n≥2,

with $a_0=2$ and $a_1=3?$

Solution:

- \Box We are looking for a_n that satisfies both recurrence and initial conditions.
- □ $a_n = b_n + h_n$ where h_n is a solution for the associated homogeneous recurrence: $h_n = h_{n-1} + h_{n-2}$
- By previous example, we know $h_n = \alpha_1((1+\sqrt{5})/2)^n + \alpha_2((1-\sqrt{5})/2)^n$. $a_n = b_n + h_n$

$$= -3n - 10 + \alpha_1((1 + \sqrt{5})/2)^n + \alpha_2((1 - \sqrt{5})/2)^n$$

Now we should find constants using initial conditions.

$$a_{0} = -10 + \alpha_{1} + \alpha_{2} = 2$$

$$a_{1} = -13 + \alpha_{1} (1 + \sqrt{5})/2 + \alpha_{2} (1 - \sqrt{5})/2 = 3$$

$$\alpha_{1} = 6 + 2\sqrt{5} \qquad \alpha_{2} = 6 - 2\sqrt{5}$$

So, $a_n = -3n - 10 + (6 + 2\sqrt{5})((1+\sqrt{5})/2)^n + (6 - 2\sqrt{5})((1-\sqrt{5})/2)^n$.

What is the solution of the recurrence relation

$$a_n = 2a_{n-1} - a_{n-2} + 2^n$$
 for $n \ge 2$,

with $a_0=1$ and $a_1=2?$

Solution:

conditions.)

What is the solution of the recurrence relation

$$a_n = 2a_{n-1} - a_{n-2} + 2^n$$
 for $n \ge 2$,

with $a_0=1$ and $a_1=2?$

Solution:

- We are looking for a_n that satisfies both recurrence and initial conditions.
- □ $a_n = b_n + h_n$ where h_n is a solution for the associated homogeneous recurrence: $h_n = 2h_{n-1} h_{n-2}$.

Find its characteristic equation

 $r^2 - 2r + 1 = 0$

 $(r - 1)^2 = 0$

 $r_1 = 1$ (Its multiplicity is 2.)

So, by theorem $h_n = (\alpha_1 + \alpha_2 n)(1)^n = \alpha_1 + \alpha_2 n$ is a solution.

What is the solution of the recurrence relation

$$a_n = 2a_{n-1} - a_{n-2} + 2^n$$
 for n≥2,

with $a_0=1$ and $a_1=2$?

Solution:

$$\Box \quad a_n = b_n + h_n$$

$$\Box$$
 $a_n = 4 \cdot 2^n + \alpha_1 + \alpha_2 n$ is a solution.

Now we should find constants using initial conditions.

$$a_0 = 4 + \alpha_1 = 1$$

 $a_4 = 8 - \alpha_4 + \alpha_5 = 2$

$$\alpha_1 = -3 \qquad \alpha_2 = -3$$

So,
$$a_n = 4 \cdot 2^n - 3n - 3$$
.

Recommended exercises

1,3,15,17,19,21,23,25,31,35

Eric Ruppert's Notes about Solving Recurrences

(http://www.cse.yorku.ca/course_archive/2007 -08/F/1019/A/recurrence.pdf)