Senioru 6. IMO trenina atrisinajumi.

Problem 9. Show that for infinitely many positive integers n there exist pairwise
distinct positive integers a1, az, ..., an such that afa3 - - a2 —4(al + a4+ al)
is the square of an integer.
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Solution, Letting fn(a1,a2, .- . ,Gn) = a3a3---as —4(af + a3+ +d2), the
of the following two facts:

is a strai ward conseq

(1) For infinitely many positive integers n there exist positive integers ai, @2, ...,
a,, such that f,,(ay,a2,.- - an) is the square of an integer, and a1 < ag; and

(2) Given an integer n > 3, if a1, ag, ..., an are positive integers such that

fala1, 2, ... ,an) is the square of an integer, and a1 < ag < -+ < ak for
some index k, 1 < k < n, then there exists an integer a > ax such that
falat,a2,.. ., @k, @, Qky2y - - ,ay,) is the square of an integer.

Problem 16. Determine the largest value the expression >, (@ + ;) /Ti%;
1<i<i<a

may achieve, as 1, 2, £3, ¥4 run through the non-negative real numbers that add up
to 1. Determine also the x; at which the maximum is achieved.

The Editors

Solution. The required maximum is 3/4 and is achieved if and only if the x; are
all equal to 1/4. To prove this, use the binomial expansion of (\/&; — /7;)* to write

A(z; + 2;)/EiT; = a? + 6wiw; +Tf — (V& — VEY,

To prove (1), notice that, if a; < a2 are arbitrarily large positive integers, then
fa(a1,ag) is an arbitrarily large positive integer congruent to 0 or 1 modulo 4.
Subtraction of a suitable number of 4's then yields 0 or 1, each of which is a square.
Letting that suitable number of 4’s be n — 2, which is clearly arbitrarily large,

fnlas,a2,1,...,1) is the square of an integer.
To prove (2), write fn(a1,az,...,a,) = b? and notice that (ax41,b) solves the
Pell equation

2. 2,2
(al---aiais---af — e’ -y =4(al + -+ o +afyp+ - +ad).

The latter has therefore infinitely many solutions in positive integers. In particular, it
has a solution (@, c) such that g > ay.+1. This establishes (2) and concludes the prof.

then sum over 1 < 7 < j < 4 and refer to the constraint #1 +z2 + 23 + &4 = 1, fo get

4N (mi+ ) AR =8 e tasta) — Y (VE-VE)!

1<i<j<4 1€i<j<4

< 3z +xg+mg-‘rm4)2 =3;

clearly, equality holds if and only if the z; are all equal, and the constraint forces them
all equal to 1/4.

Probiem 17. Let ABC be an acute triangle such that AB < AC. Let I be the
incentre of the triangle ABC, and let the incircle touch the side BC at D. The line
AD crosses the circle ABC again at E. Let M be the midpoint of the side BC, and
let N be the midpoint of the circular arc BAC. The line EN crosses the circular arc
BIC at P. Show that the lines AD and M P are parallel.
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Solution. The internal bisectrix Al and the perpendicular bisectrix M N of the

side BC cross at the midpoint K of the arc BEC. Tt is a fact that the circle BIC is
centred at K.

Let the lines /D and N PE cross at L. Notice that /EAIl = /EAK = ZENK =
ZELI (since IL and K N are parallel), to infer that the quadrangle AIEL is cyclic,
so DI-DL = DA-DE = DB DC, showing that L lies on the circle BIC.

Since the angles K BN and KCN are both right, and the circle BIC is centred at
K, the lines NB and NC are the tangents from N of this circle. It then follows that
the line NPEL is the P-simedian of the triangle BCP, so ZBPL = LCPM.




Let now the line M P cross the circle BIC again at @, to infer that the arcs BL
and CQ of this circle have equal angular spans, so L and Q are reflexions of one
another in the perpendicular bisectrix KM N of the chord BC.

Project @ orthogonally to Q' on BC and refer to standard notation in the triangle
ABC': a, b, c denote the lengths of the sides BC, CA, AB, respectively, s = (a +
b + ¢)/2 denotes its semiperimeter, r its inradius, and S its area. With reference to
standard formulae, write CQ’ = BD = s —band
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.., _DB-DC _(s=b)s—¢) __S
Q' =DL=—pr—= T -

s—a

to infer that @ is the A-excentre of the triangle ABC, so it lies on the line ATK.
Finally, write ZPQA = /PQI = /PLI = LELI = ZEAI = LDAQ, to
conclude that the lines AD and M P are indeed parallel.

is that the A-excentre of

Remark. Another cc q of the above
the triangle ABC lies on the circle NPK.

Problem 18. Given an integer n > 2, colour red exactly n cells of an infinite sheet
of grid paper. A rectangular grid array is called special if it contains at least two red
opposite corner cells; single red cells and 1-row or 1-column grid arrays whose end-
cells are both red are special. Given a configuration of exactly n red cells, let NV be the
largest number of red cells a special rectangular grid array may contain. Determine
the least value N may take on over all possible configurations of exactly n red cells.

Based on Mathematical Olympiad Rioplatense, 2010, Level 2

Solution. The required minimum is 1 + [(n + 1)/5] and is achieved by the con-
figuration described in the second block of the proof.

Given a configuration of exactly n red cells, we show that N > (n + 6)/5. Con-
sider the minimal rectangular grid array A containing the 7 red cells. By minimality,
A contains some {not necessarily pairwise distinct) red cells a, b, ¢ and d on the
bottom row, the rightmost column, the top row, and the leftmost column, respectively;
if, for instance, « is the lower-left corner cell, then the list reads a, b, ¢, a

Letting [zy] denote the (unique) rectangular grid array whose opposite comer cells
are z and y, notice that the (not necessarily pairwise distinct) special rectangular grid
arrays [ab], [be], [cd], [da} and [ac] cover A: the first two cover the part of A to the
right of [ac], and the next two cover the part of A to the left of [ac].

If z and y lie in ‘adjacent’ comer k x k subsquares of S, then the red cells in [zy]
come from those subsquares alone. In addition, the string of red celis in one of those
subsquares has exactly one cell in [zy], namely, z or y. Consequently, 7(zy) < 72+ 1.
Incidentally, notice that equality holds if, for instance, z is the lower-right corner cell
of Spz, and y is any red cell in Syp ; since . > 2, there is at least one such.

If = and y lie in ‘opposite’ corner k& X k subsquares of .3, then they are the only
red cells [xy] contains from those subsquares. No red cell in the other two ‘opposite’
corner k x k subsquares of S lies in [zy], and the other red cells in [zy] all come from
Sc which contains at most 1 — 1 such. Consequently, rgy) < 2+ (m—1) =m+1.

Finally, if one of z, y lies in Sc, and the other lies in one of the corner k x k sub-
squares of S, then the latter cell is the only red cell in [#y] outside S¢. Consequently,
Play) < (m —1) +1=m <m+ L. This ends the proof.

Counting multiplicities, the cells a and ¢ are both covered by three of these special
rectangular grid arrays, the cells b and d are both covered by two, and all other red
cells are covered by at least one. Letting ri, denote the number of red cells in [zy],
it follows that r(as) + T(be] + Tiea) + Tida] + Tac) = 3-2+2-2+(n—4) =n+6.
Consequently, N > (n + 6)/5.

We now describe a configuration of exactly n red cells where N = 1+[(n+1)/5].
Write m = [(n + 1)/5], so n = 5m — 7 for some positive integer r < 5, and
N=m+1

Fix an integer k > 2m, let S be a 3k x 3k grid square, and subdivide S into nine
k x k grid subsquares.

Let Sz, be the lower-left corner k x k grid subsquare of S. Colour red the first m
cells along the diagonal upward from the lower-right corner cell of Sz

The ‘min’ and ‘max’ in the next four paragraphs account for the first few cases
where m <.r. Had we assumed n > 20, it would then have followed that 7 > r, and
‘min’ and ‘max’ would have been superfluous.

Next, let Syz be the upper-left corer & x k grid subsquare of S. Colour red the
first min(m, 4m — r) cells along the diagonal upward from the lower-left corner cell
of Syr.

Let further Sy g be the upper-right corner k x k grid subsquare of S. Colour red
the first min(rn, 3m—r) cells along the diagonal downward from the upper-left corner
cell of Syrr.

Complete the corner tour by letting Sz r be the lower-right corner &k x k grid sub-
square of S. Colour red the first min(mn, 2m — ) cells along the diagonal downward
from the upper-right corner cell of Sy r.

Finally, let S be the central k x k grid subsquare of S, and colour red max(0, m—
r) cells of S¢ ; their exact location is irrelevant.

No other cell whatsoever is coloured red, and it is a routine exercise to check that
exactly n cells of the grid paper have been coloured red. Notice that, for each pair
of ‘adjacent’ corner k& x k grid subsquares, Sz, and Syz, Syr and Syg, Sur and
Spr, and Spp and Sty there are both horizontal and vertical grid lines separating
the strings of red cells they contain.

To complete the argument, we show that, if  and y are red cells in this configu-
ration, then rigy; < m + 1. This is clearly the case if x and y both Jie in one of St
Svr, Sur, SLr or Sc, for each of these squares contains at most 7 red cells.




