Senioru 7. IMO trenina atrisinajumi.

1. The only numbers n < 28 satisfying the condition are n € {2,4,10}. Let n > 28.
Note that the sequence a; is symmetric with respect to 55 80 @i+ Qgp1—; = N
T2{n, then ay = 1, ag = 2 and 3 | @y + az. On the other hand, if 3 | n, taking i
such that a; < 2 < ag1; would yield 3 | a; + i1 = n. Therefore 2} n and 31 n,
implying that a; = 3. Then we also have aj_; =n—3 and @y =n — 1.

If n=2 (mod 3}, then 3 | ax—; + ax = 2n — 4. Therefore n =1 (mod 3).

If a; + aiy1 = 2 (mod 3} for some 4, then ax—; + ags1-; = 2n — (a; + aiy1)
(mod 3). Hence a; + a;p1 = 1 (mod 3) for all i = 1,2,..., % — 1. Induction gives
us

=1 and ag=as=--=0 (mod3). ()

Since (n,9) = 1, we have as = 9, whereas a3 = 1 (mod 3) implies that ay = 7. We
deduce that (n,7) = 1 and (n,5) # 1,50 5| n.

Now we have (n,21) = (n,27) = 1, but the numbers 22, 24, 25 and 26 are not
coprime to n, and by (), number 23 cannot occur among a,...,ax either. It

follows that 21 and 27 are consecutive terms in the sequence ay,...,ax, but 3 |
214 27, which is a contradiction.
Therefore, the only solutions are 2, 4 and 10.

2. (a) It suffices to show that every normalized sequence a1,as,..., G241 is embed-

dable in some interval of length 2 — 21,‘ We use induction on n. Case n = 0 is

trivial, so assume that n > 1. By the inductive hypothesis there is a sequence
T, T3, - +; Bon—1 € [0, 2—57] such that jo; —z;_y| =a; fori=1,... . 2n—1. We
assume w.L.o.g. that an_1 <1 — 2.

(1) If azn > g, we can take wan = @an_1 + azn € [1,2—5%] and @gnq1 =

Tan — agnt1 € [0, 23], thus embedding the sequence in [0, 2~ ]

2°) If @z, < 5, we take Top = Tap1 — Qon € [—o, 1 =5k and Topt1 = Tan +
2 2 2

A2ty thus embedding the sequence in one of the intervals [0,2—5k] and

(b) Denote N = 321 1. We claim that the following sequence of length 4n — 1:
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5% ), Which implies the statement.

Assume the oppasite. Tt follows by simple induction that:

Its dual statement, obtained by the polar map with respect to v, is as follows:
o Let a conic v be inscribed in a quadrilateral ABCD with AD N BC = {P}
and ABNCD = {Q}. Let XU and XV be tangents from an arbitrary point
X to 4. Then there is an involution on the pencil of lines through X that
maps XA < XC, XB+ XD, XP & XQ and XU & XV.
In our case, the angles AXC, BXD and PXQ have the common bisector s, so this
involution must be the reflection in s. Therefore, the two tangents from X to k are
symmetric with respect to s.

[

(1) oz < 1-25L and |moipr| > Lol for i = 1
(i) |22 < Z507 and i) > 1-250=L for i =m,...,2n — 1.

Thus for z4,-1 we arrive at a contradiction.

. It follows from <XAD = <XBC and <XDP = <XCP that AXAD ~ AXBC.
Let the bisector sx of angle AXC meet the circles PAB and PCD again at K and
R, and let the bisector sp of angle APC meet the circles PAB and PCD again at
L and S, respectively. Line sp passes through the center I of circle k. We recall
that LA = LB = LI and SC = SD = S].

Since <JLK = <PXK = 4PXR = <SR, we have KL || RS. Furthermore,
<RXS = RXC — 4SPC = }(<AXC — <APC) = 1<«BXC and, similarly,
<LXK = 3<4BXC. It follows that arcs KL
and RS subtend equal angles in the circles PAB
and PCD, as well as arcs LB and 5D, so we
have KL = L5 = LI Hence AIKL ~ AIRS,
which means that I lies on the line KR which
bisects angle AXC'. This completes the proof.

Second solution. Denote by U and V the inter-
sections of the bisectors of angles AXD and
BXC with AD and BC, respectively. As in
the first solution, AXAD ~ AXBC and hence
<XUP = <XVP, so the points X, P, U and
V lie on a single circle 4. We shall prove that
T also lies on 7 and that [U = TV. This will imply that I lies on the bisector of
<UXV, which coincides with the bisector of <AXC.

Let M and N be the tangency points of k with sides AD and BC, respectively.
Denote AM = a, BN = b, CN = cand DM = d. Then AB = a+b, CD = c+d and
AU : UD = (atb) : (c+d), from which we find AU = 2 4D = (et
Analogously, BY = L8029 1t follows that AM — AU = BV — BN = 2=t
so MU = NV and hence AIMU i AINV are congruent and equally oriented. We
infer that IU = IV and <UIV = <MIN = 180° - <VPU, i.e. I is the midpoint
of ate UV of the circle PXUV.

Third solution. The following stat t is known from projective geometry.

o Desargue’s Involution Theorem. Let a quadrilateral ABCD be inscribed in
a conic 7. A line £ intersects AB, CD, BC, DA, AC, BD respectively at
points Xy, Xy, Y1, Y2, Z1, Z5, and meets v at Wi and Wy. Then there is an
involution on £ that maps X > X», Y1 ¢ Y3, Z), > Zo and W) & Wa.

5. The answer is n < 3.
The gas station paired with station X will be denoted by X’.

For n < 1 the statement trivially holds. For n = 2, let AB = A’B’ be the smallest
of all distances between two stations. Starting from A, the car can reach 4', e.g.
by the route AB’A’ (the case of route ABA’ is similar), but in B there is enough
gas to reach the nearest station, which is 4, so the route BAB’A’ is feasible.

We will now show the statement for n = 3 and six stations A, A, B, B/, C, C".

Let AB = A’B' be the smallest of the distances between two stations and assume

w.lo.g. B is the nearest station to C. We par-

tition the stations into sets § = {4,B,C} and

8" = {A',B',C'}. Starting from any station the

car can reach the other set.

(1°) Suppose that the car starting from A cannot
reach set S’ by the route AB. Reaching &'
is then impossible by the route AC' as well
- otherwise route ABCS’ would be feasible,
because BC' < AC and the gas in B suffices
to compensate for the usage on the route AB.
Therefore, starting from A, the car must go straight towards §'. The nearest
station in 8’ is C”, so the entire route CBAC' B’ A’ is feasible. The case when
the car starting from A’ cannot reach set S by the route A'B’ is analogous.




(2°) If case (1°) does not apply, let the car head from A straight to 3. Since set
§' is in the reach and BC' < d(B, §’) = BC', the car can proceed from B to
C. The gas in C will compensate for the usage on the route BC, and since
d(C,S'") = CA' < d(B, §"), set S is still in the reach and the nearest station
is A’ As before, the car can now go to B and then to C”, which results in
the route ABCA'B'C’.

It remains to construct a counterexample for n > 4. Assuming that the semiperime-
ter of the planet is 1, arrange the stations A, As, ..., A, along the equator such
that AxA; = A3As = = Apdn, =d < ﬁ and place the station 4; such
that A;A3 = d and A;A; = A1 A;. We again denote S = {A;,..., 4.} and §' =
{A,..., AL}. Supply the stations Ay, AY,..., Ap_y, A, with gas needed to drive
the distance d, and the stations A, and A} with An

gas needed to drive the distance 1 — (n—1)d. From
each station it is possible to reach the paired sta- 2
tion: Indeed, the routes A1 AgAq... AnAyAL AL and 44
Aihigr ... AgAydly. . Al for 2< i < nare all feasible.
On the other hand, each of the stations A;,..., A,
has only enough gas for reaching the nearest station, .
and in A, and A}, only enough for reaching the other Al
set. So, in order to visit all stations, the car must pass w.l.o.g. the entire set S
without using the gas in A,, ie. with the gas that is only enough to drive the
distance (n—1)d, which is impossible.
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